Statistics II: Handelling and Processing Data

11.1 Revision Exercise

Marks Available: 60

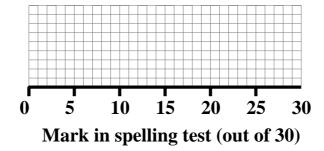
Question 1

Nineteen students took part in a spelling test.

There were thirty words in the test, one mark for each word spelt correctly.

Here are the marks that resulted.

28	25	18	23	23	12	24	27	18	21
25	30	15	28	30	21	22	23	19	


(a) Put the data in order.

[2 marks]

- (b) Find (i) The lower quartile.
 - (ii) The median.
 - (iii) The upper quartile.
 - (iv) The interquartile range.

[4 marks]

(c) Plot a box and whisker diagram to show the distribution of the test marks.

[5 marks]

Twenty children were asked how they rated their maths teacher. Here are the results:

ala ala ala	ala ala	ale ale ale ale ale	ala ala ala				
****	***	****	****	****	***	***	****
****	***	***	****	*	***	**	****

Number of stars	*	**	***	****	****
Frequency					

(a) Fill in the frequency row of the table.

[3 marks]

(**b**) Showing your working, calculate the average (mean) star rating of the maths teacher.

[3 marks]

Question 3

The table shows the distribution of the number of *minor errors* made by a random sample of 35 people sitting their driving test.

Number of errors	0	1	2	3	4	5	6	7	8	9	10
Frequency	2	12	9	6	2	3	1	0	0	0	0

(a) In the test, people making three or fewer *minor errors* pass. What percentage of people pass the test?

[2 marks]

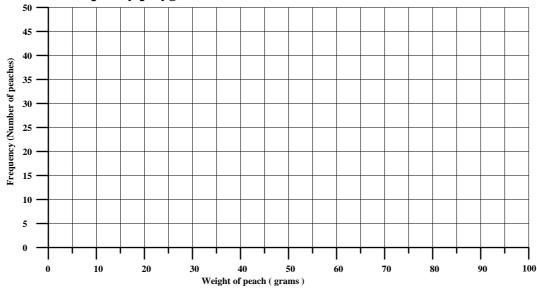
(**b**) What is the median number of *minor errors* made?

[2 marks]

The table below shows the distribution of the weights of 150 peaches.

Weight (w grams)	Number of peaches	
$40 < w \le 50$	23	
$50 < w \le 60$	41	
$60 < w \le 70$	50	
$70 < w \le 80$	20	
$80 < w \le 90$	16	

(a) What is the modal class?


[1 mark]

(**b**) Showing your working, calculate an estimate of the mean weight of a peach.

[4 marks]

(${\bf c}$) Plot a frequency polygon to show the distribution of the weights of the peaches.

[4 marks]

Question 5

(ii)

(iii)

(iv)

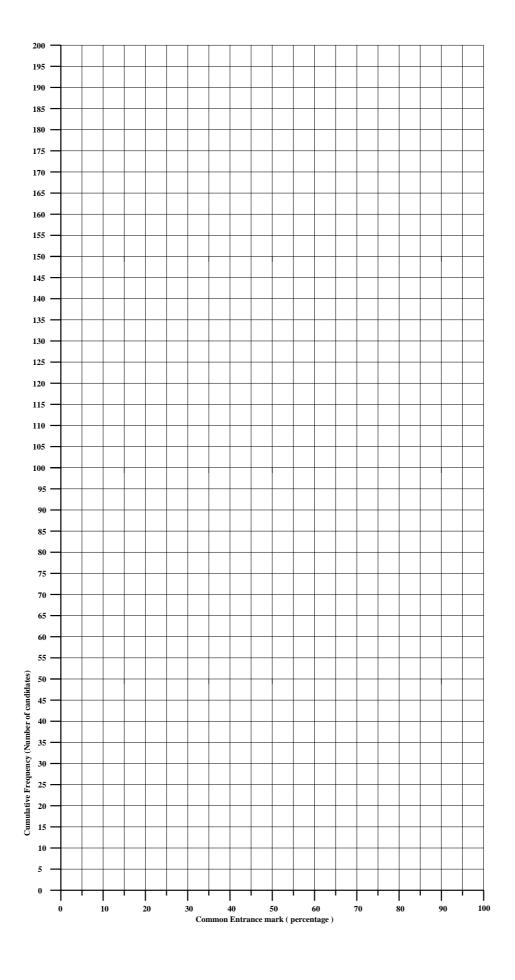
The median mark.

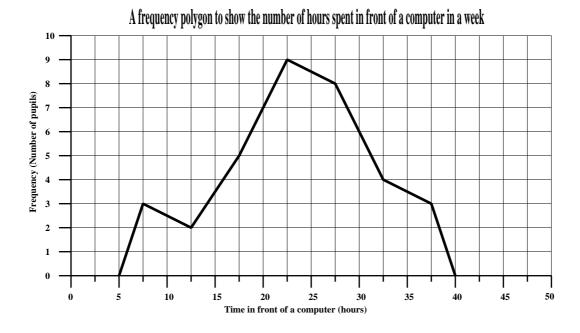
The upper quartile mark.

The interquartile range.

The following table shows the distribution of the marks scored by last year's common entrance candidates in their mathematics papers;

Mark (m percent)	Frequency	Cumulative Frequency
$1 \le m \le 10$	0	
$11 \le m \le 20$	7	
$21 \leqslant m \leqslant 30$	14	
$31 \leqslant m \leqslant 40$	18	
$41 \leqslant m \leqslant 50$	33	
$51 \leqslant m \leqslant 60$	36	
$61 \le m \le 70$	43	
$71 \leqslant m \leqslant 80$	28	
81 ≤ <i>m</i> ≤ 90	8	
91 ≤ <i>m</i> ≤ 100	5	


/ 1	1 11 1 100	ē		
(a)	Complete the colu	mn headed "cumula	tive frequency" in the above tab	ole. marks]
(b)	How many candida	ates were there ?	[:	1 mark]
(c)	How many candid	ates scored 50% or l	ess?	
(d)	How many candid	ates scored more tha	_	1 mark]
			[2	marks]
(e)		-	xt page, plot the cumulative freommon entrance marks.	quency
			[3	marks]
(f)	Use your graph to (i) The lower	determine, r quartile mark.		


[1 mark]

[1 mark]

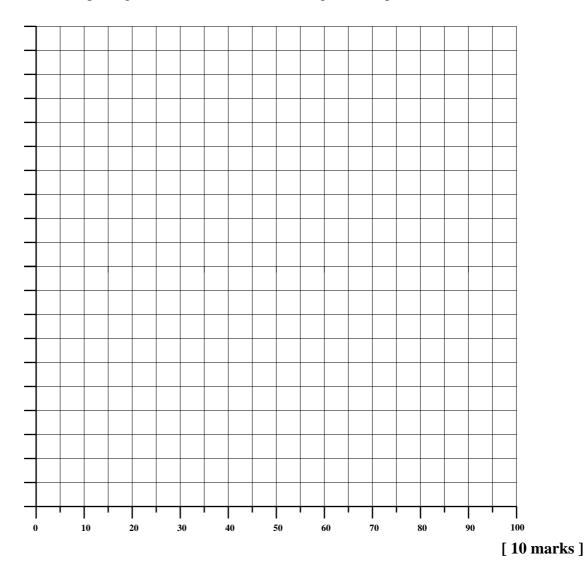
[1 mark]

[1 mark]

The frequency polygon shows the number of hours spent on a computer by a class of pupils in a week.

(a) Use the graph to fill in the following grouped frequency table;

Number of hours	Frequency		
5 ≤ <i>h</i> < 10			
10 ≤ <i>h</i> < 15			
15 ≤ <i>h</i> < 20			
20 ≤ h < 25			
25 ≤ <i>h</i> < 30			
30 ≤ <i>h</i> < 35		·	
35 ≤ <i>h</i> < 40		·	


[2 marks]

(b) Calculate an estimate for the mean (average) number of hours a pupil spends on a computer during a week.Answers without working will not be marked.

The following table shows the distribution of the times taken by 300 teenagers to get up in the morning following 7.30am alarm call.

Time Taken (t minutes)	Frequency	Width	Height
$0 < t \leqslant 4$	64		
$4 < t \le 10$	42		
$10 < t \le 20$	84		
$20 < t \le 30$	64		
$30 < t \le 50$	36		
$50 < t \le 90$	10		

After completing the above table, draw a histogram to represent the data.

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School

It may be freely duplicated and distributed, unaltered, for non-profit educational use

In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**"

© 2025 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from MHHShrewsbury@Gmail.com