3E.1 Rational Functions and Asymptotes

The asymptotes of rational functions can be of three types; horizontal, vertical or oblique. Behind the scenes, as with differentiation, the theory of limits is at play. However, as with differentiation, a set of straight forward rules finds the asymptotes without having to battle through tedious technicalities.

Definition: A Rational Function...

...is of the form
$$\frac{P(x)}{Q(x)}$$
 where $P(x)$ and $Q(x)$ are polynomials.

In such functions the degree of the two polynomials, P(x) and Q(x) is of crucial importance when determining the asymptotes.

With each polynomial arranged with the powers of x in decreasing order the leading term is then the first term.

The coefficient of the leading term of P(x) is p

The coefficient of the leading term of Q(x) is q

That is,
$$P(x) = p x^{deg(P(x))} + other lower power terms$$

$$Q(x) = q x^{deg(Q(x))} + other lower power terms$$

Test for Horizontal Asymptotes

Compare the degree of the numerator P(x) with that of the denominator Q(x);

If deg(P(x)) > deg(Q(x)) then there is no horizontal asymptote.

If
$$deg(P(x)) = deg(Q(x))$$
 then $y = \frac{p}{q}$ is a horizontal asymptote.

If deg(P(x)) < deg(Q(x)) then the x-axis is a horizontal asymptote.

Test for Vertical Asymptotes

Set the denominator, Q(x), equal to zero and solve.

The solutions are the equations of vertical asymptotes.

(Unless the numerator has an identical solution in which case there is a point hole in the curve for that value of x)

Test for Oblique Asymptotes

If deg(P(x)) - deg(Q(x)) = 1 then there exists an oblique asymptote.

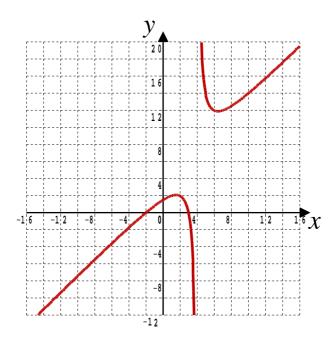
Polynomial division of P(x) by Q(x) gives its equation.

(Any remainder from the division is ignored)

3E.2 Example

Find all asymptotes to the curve,
$$y = \frac{x^2 - x - 6}{x - 4}$$

Once found, carefully add them to the graph of the curve presented below.



A full solution is presented on the following page.

3E.3 Solution

$$P(x) = x^2 - x - 6 : deg(P(x)) = 2$$

 $Q(x) = x - 4 : deg(Q(x)) = 1$

Testing for horizontal asymptotes;

As deg(P(x)) > deg(Q(x)) there is no horizontal asymptote.

Testing for vertical asymptotes;

$$Q(x) = 0$$
$$x - 4 = 0$$
$$x = 4$$

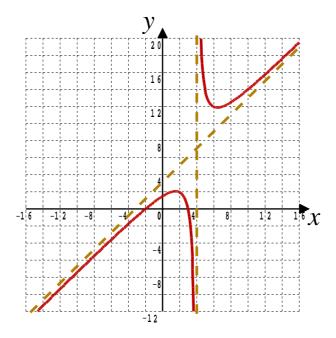
There is a vertical asymptote with equation, x = 4

Testing for oblique asymptotes;

As deg(P(x)) - deg(Q(x)) = 1 there exists an oblique asymptote.

$$\begin{array}{r}
x + 3 \\
x - 4 \overline{\smash)x^2 - x - 6} \\
\underline{x^2 - 4x} \\
3x - 6 \\
\underline{3x - 12} \\
6 \leftarrow \text{ Ignore } !$$

There is an oblique asymptote with equation y = x + 3



3E.4 Exercise

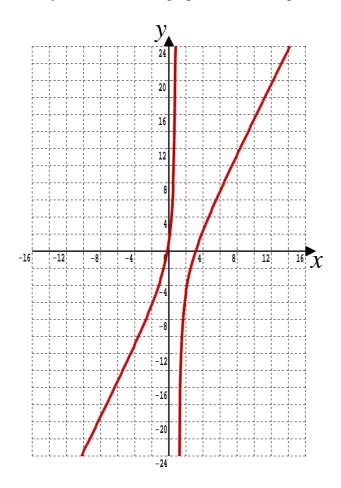
Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 18

Question 1

Find all asymptotes to the curve,
$$y = \frac{2x^2 - 6x - 1}{x - 1}$$

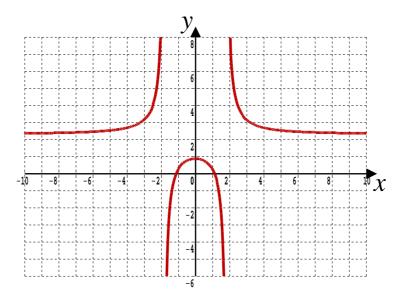
Once found, carefully add them to the graph of the curve presented below.



Question 2

Find all asymptotes to the curve, $y = \frac{7x^2 - 9}{3x^2 - 10}$

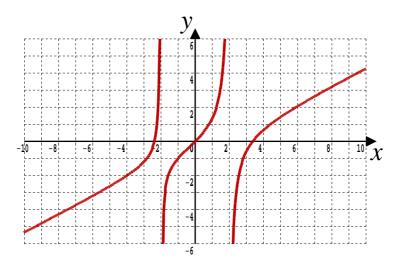
Once found, carefully add them to the graph of the curve presented below.



Question 3

Find all asymptotes to the curve,
$$y = \frac{x^3 - x^2 - 8}{2x^2 - 8}$$

Once found, carefully add them to the graph of the curve presented below.



[6 marks]