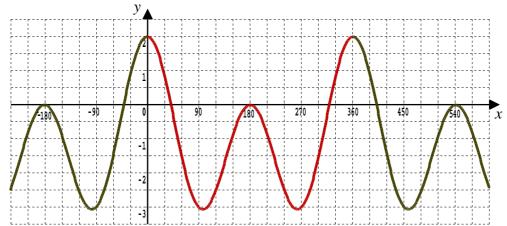
Trigonometry IV

2.1 In Disguise


Faced with an unfamiliar mathematical situation, a technique frequently deployed is to seek a way to transform it into a more familiar situation for which a method of solution is already known.

Here is a seemingly more complicated trigonometric equation to solve;

$$4\cos^2 x + \cos x - 3 = 0$$
 for $0^{\circ} \le x \le 360^{\circ}$

How might this be handled?

Using a graphics calculator or a graph plotter would give some idea of the situation in which the problem is embedded.

Where does this (red piece of) graph have zero height?

It would seem that there is one solution around 45° , another around 315° , and possibly one or two more close to 180° although it's not clear if the curve gets to or crosses the *x*-axis near 180° .

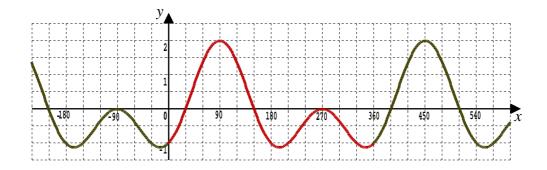
Of course, what is sought is a mathematical method of solving the trigonometric equation which the teaching video will now reveal,

Teaching Video: http://www.NumberWonder.co.uk/v9044/2.mp4

[6 marks]

2.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable


Marks Available: 30

Question 1

The graph is of the trigonometric equation,

$$f(x) = 2\sin^2 x + \sin x - 1$$

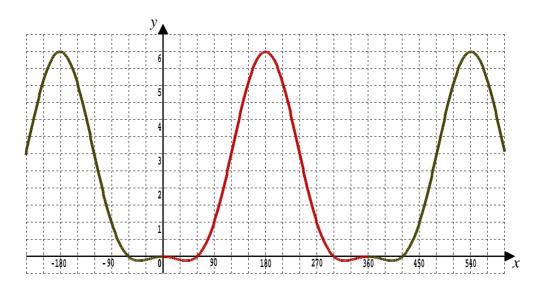
with a focus on the red piece on the interval $0^{\circ} \le x \le 360^{\circ}$

(i) From looking at the graph, write down the possible approximate values of x that would satisfy the equation

$$2\sin^2 x + \sin x - 1 = 0,$$
 $0^{\circ} \le x \le 360^{\circ}$

[4 marks]

(ii) Use the mathematics of a *quadratic in disguise* to solve the equation


$$2\sin^2 x + \sin x - 1 = 0,$$
 $0^{\circ} \le x \le 360^{\circ}$

Question 2

The graph is of the trigonometric equation,

$$f(x) = 2\cos^2 x - 3\cos x + 1$$

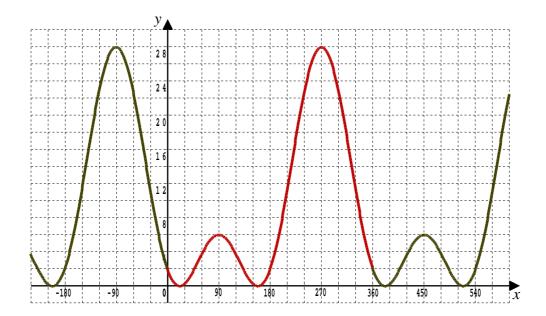
with a focus on the red piece on the interval $0^{\circ} \le x \le 360^{\circ}$

(i) From looking at the graph, write down the four approximate values of x that would satisfy the equation

$$2\cos^2 x - 3\cos x + 1 = 0,$$
 $0^{\circ} \le x \le 360^{\circ}$

[4 marks]

(ii) Use the mathematics of a *quadratic in disguise* to solve the equation

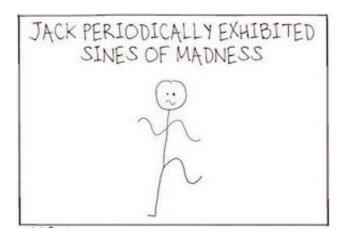

$$2\cos^2 x - 3\cos x + 1 = 0,$$
 $0^{\circ} \le x \le 360^{\circ}$

Question 3

The graph is of the trigonometric equation,

$$f(x) = 15\sin^2 x - 11\sin x + 2$$

with a focus on the red piece on the interval $0^{\circ} \le x \le 360^{\circ}$



It's not clear from the graph how many, if any, solutions there are as the minimum points could be above or below the *x*-axis.

By viewing the following equation as a *quadratic in disguise* find the solutions, if there are any, to the equation

$$15 \sin^2 x - 11 \sin x + 2 = 0, \quad 0^{\circ} \le x \le 360^{\circ}$$

[10 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**"

© 2025 Number Wonder

 $Teachers\ may\ obtain\ detailed\ worked\ solutions\ to\ the\ exercises\ by\ email\ from\ MHHShrewsbury@Gmail.com$