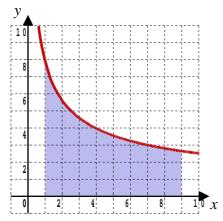

Additional Mathematics Grade Gobbler 5

40 Mark Paper

Question 1

A cuboid ABCDEFGH measures 7 cm by 4 cm by 3 cm, as shown below.

Calculate, in degrees, the angle *HAC*.


Give your answer accurate to 1 decimal place.

[3 marks]

Question 2

$$f(x) = 1 + \frac{7x^2}{4} - x^3$$

Determine the value of f'(3)

Use integration to find, $\int_{1}^{9} \frac{8}{\sqrt{x}} dx$

[4 marks]

Question 4

A circle has equation, $x^2 + y^2 - 8x + 2y + 8 = 0$

(i) Write the circle's equation in the form $(x - a)^2 + (y - b)^2 = r^2$ where a, b and r are constants to be found.

[3 marks]

(ii) Hence, or otherwise, state the coordinates of the circle's centre and its radius.

[2 marks]

A quadratic equation of the form $ax^2 + bx + c = 0$

has solutions given by the well known formula, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

(i) Show how to use this formula to find the solutions of;

$$x^2 + x - 1 = 0$$

Give your answers correct to three significant figures.

[4 marks]

The discriminant, D, is the piece of this formulae that is under the square root sign.

i.e.
$$D = b^2 - 4ac$$

(ii) Calculate the discriminant associated with the quadratic equation;

$$x^2 + 8x + 26 = 0$$

[2 marks]

(iii) What does the part (ii) answer tell you about $x^2 + 8x + 26 = 0$?

[1 mark]

Question	ı b

(a)	Use the ${}^{n}C_{r}$ button on your calculator to determine the values of,							
	(i)	$^{7}C_{3}$	(ii)	$^{11}C_{7}$	(iii)	$^{16}C_{4}$		
						[3 marks]		
(b)	In a very large box of Smarties TM , 14% are blue. In a dark cinema, Charlie eats five Smarties TM without looking at their colour. Consider the formula;							
	In this		$Smarties^{TM}$)	$= {}^{n}C_{r}p^{r}q^{r}$	i - r			
	In this formula, n is the number of Smarties TM eaten							
		r is the number of Blue Smarties TM eaten						
	p i	p is the probability of a Blue Smartie TM being eaten						
	q is the probability of a non-Blue Smartie TM being eaten							
	(i) Calculate the probability that exactly two of the five Smarties TM eaten are blue. Give your answer to three decimal places.							
						[2 marks]		
	(ii)			•	four of the five decimal places			
						[2 marks]		
	(iii)		significance s very large?		Smarties TM be	ing		

[1 mark]

(a) $v^2 = u^2 + 2as$

Make *s* the subject of the formula.

[1 marks]

- (**b**) A car crosses a speed hump with a velocity of 4 m s^{-1} It then accelerates at a rate of 2.5 m s^{-2} to a speed of 9 m s^{-1} when the driver applies the brakes, causing an acceleration of -3 m s^{-2} , reducing the speed of the car to 4 m s^{-1} to cross the next hump.
 - (i) How far apart are the humps?

[2 marks]

(ii) How long does the car take to travel from one hump to the next?

[2 marks]

(iii) The question implies that the car is being modelled as a particle. In what way does this assumption affect your results?

[1 mark]

$$f(x) = 4x^4 + px^3 + x^2 - 2$$
 where p is a constant

When f(x) is divided by (2x - 1) the remainder is -1.75

By using the remainder theorem, or otherwise, determine the value of p.

[3 marks]