Additional Mathematics Grade Gobbler 7

40 Mark Paper

Question 1

A cone's circular base, where x and y are in cm, is described by the equation

$$x^2 + y^2 + 6x - 14y = 6$$

(i) Write the equation of the circular base in the form

$$(x-a)^2 + (y-b)^2 = r^2$$

[2 marks]

(ii) The cone has a perpendicular height, h, of 13.5 cm. Determine the volume of the cone, correct to 1 decimal place.

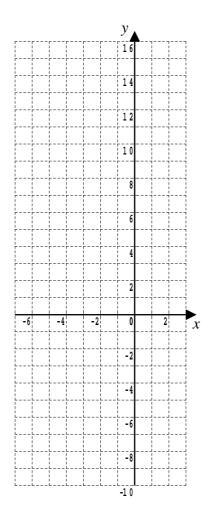
Voume of a cone =
$$\frac{\pi}{3} r^2 h$$

[1 mark]

Question 2

By using Pascal's Triangle, or otherwise, expand the brackets;

$$\left(\frac{1}{3x} + x\right)^4$$


This question is about plotting the graph of the quadratic curve $y = x^2 + 4x - 5$ and then using the graph to solve an inequality.

(i) Rajit has decided to make a table to assist him in determining some points on the quadratic curve $y = x^2 + 4x - 5$ He has calculated that (-6, 7) is on the curve. Help Rajit by completing his table.

х	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
x^2		36									
4x - 5		- 29									
у		7									

[2 marks]

(ii) Use the table to plot the quadratic curve $y = x^2 + 4x - 5$ Place the equation of the curve next to the curve plotted.

(iii) Factorise $x^2 + 4x - 5$

[1 mark]

(iv) There is a link between the graph of the curve $y = x^2 + 4x - 5$ and its factorisation.

Look at the curve carefully and try to spot the connection.

State the connection;

[1 mark]

(v) Explain the connection

[1 mark]

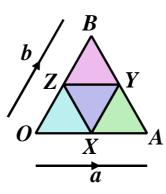
(vi) Solve the inequality $x^2 + 4x < 5$

[2 marks]

Question 4

Prove that
$$\frac{\sqrt{1 - \cos^2 \theta}}{\sqrt{1 - \sin^2 \theta}} = \tan \theta$$

(Regular GCSE Revision Question)


The diagram below shows four congruent equilateral triangles arranged edge-to-edge to form a large equilateral triangle.

Notice that;

$$\overrightarrow{OA} = a$$

and;

$$\overrightarrow{OB} = \boldsymbol{b}$$

Describe, in terms of the vectors a and b, the following;

$$(i)$$
 \overrightarrow{OX}

$$(ii)$$
 \overrightarrow{AX}

$$(iii)$$
 \overrightarrow{ZB}

$$(iv)$$
 \overrightarrow{YZ}

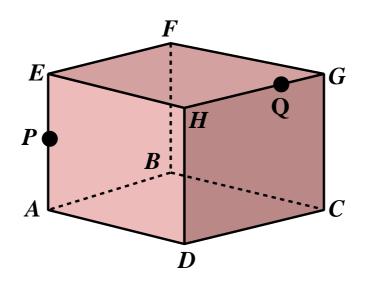
$$(\mathbf{v})$$
 \overrightarrow{ZO}

$$(\mathbf{vi})$$
 \overrightarrow{BA}

$$(\mathbf{vii})$$
 \overrightarrow{ZX}

(viii)
$$\overrightarrow{OY}$$

$$(\mathbf{i}\mathbf{x})$$
 \overrightarrow{AZ}


[3 marks]

Question 6

Differentiate,
$$y = \frac{4x^3 + 3x^5}{x^2}$$

ABCDEFGH is a cube of side 4 cm.

AP = 2 cm and HQ = 3 cm.

Calculate;

(i) the lengths of EQ and PD

[2 marks]

(ii) the length of PQ

[1 mark]

(iii) the angle between PQ and the plane EFGH

[2 marks]

(iv) the angle QPD

[3 marks]

(i) Show that 144 is a factor of 1296

[1 mark]

(ii) Consider the graph of the equation,

$$y = 36x^4 - 648x^2 + 18$$

Determine $\frac{dy}{dx}$

[1 mark]

(iii) Hence determine all three turning points.

[3 marks]

(iv) Determine $\frac{d^2y}{dx^2}$

[1 mark]

(v) Hence, for each turning point, determine if it is a local minimum or or a local maximum.

Determine
$$\int_0^1 (x+5)(2x^2+1) dx$$

[2 marks]