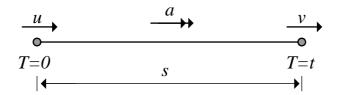
Year 1

~ MECHANICS ~


Constant Acceleration Kinematics

 $K \cdot I \cdot N \cdot E \cdot M \cdot A \cdot T \cdot I \cdot C \cdot S$

1.1 Derivation of the SUVAT equations

Consider a straight line interval over which a particle accelerates uniformly;

s = displacement

 $u = initial \ velocity$

 $v = final\ velocity$

a = acceleration (constant)

t = time

We know that acceleration is is the rate of change of velocity.

Furthermore, if the acceleration is constant,

$$a = \frac{change \ in \ velocity}{change \ in \ time}$$

$$a = \frac{v - u}{t - 0}$$

$$at = v - u$$

$$\therefore v = u + at$$

Result N° 1

When the acceleration is zero, we know that

$$Distance = Speed \times Time$$

but when there is constant acceleration this becomes

 $Displacement = Average Speed \times Time$

$$s = \left(\frac{v+u}{2}\right)t$$
 Result $N^{\circ} 2$

Substituting Result N° 1 into Result N° 2 gives Result N° 3 as follows;

$$s = \left(\frac{v+u}{2}\right)t$$

$$s = \left(\frac{(u+at)+u}{2}\right)t$$

$$s = \left(\frac{2u+at}{2}\right)t$$

$$s = \left(\frac{2u}{2} + \frac{at}{2}\right)t$$

$$s = \left(u + \frac{1}{2}at\right)t$$

$$s = ut + \frac{1}{2}at^2$$

Result N° 3

A fourth result is obtained by first noting that Result N° 1

$$v = u + at$$

can be written as

$$t = \frac{v - u}{a}$$

and substituting this into Result N° 2

$$s = \left(\frac{v+u}{2}\right)t$$

$$s = \left(\frac{v+u}{2}\right)\left(\frac{v-u}{a}\right)$$

$$s = \frac{v^2 - u^2}{2a}$$

$$2as = v^2 - u^2$$

$$v^2 = u^2 + 2as$$

Result N° 4

A fifth result is obtained by first noting that Result N° 1

$$v = u + at$$

can be written as

$$u = v - at$$

and substituting this into Result N° 2

$$s = \left(\frac{v+u}{2}\right)t$$

$$s = \left(\frac{v+v-at}{2}\right)t$$

$$s = \left(\frac{2v-at}{2}\right)t$$

$$s = \left(\frac{2v}{2} - \frac{at}{2}\right)t$$

$$s = \left(v - \frac{1}{2}at\right)t$$

$$s = vt - \frac{1}{2}at^2$$

Result N° 5

1.2 The five SUVAT equations

$$v = u + at$$

$$s = vt - \frac{1}{2}at^{2}$$

$$u$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v$$

$$s = \left(\frac{v + u}{2}\right)t$$

$$a$$

$$v^{2} = u^{2} + 2as$$

$$t$$

1.3 Example

Additional Mathematics Examination Question from June 2010, Q6 (corrected) An aeroplane touches down at a point A on a runway, travelling with a velocity of 90 m s⁻¹. It then decelerates uniformly until it reaches a velocity of 6 m s⁻¹ at a point B on the runway, 2016 m from A.

(i) Find the deceleration.

[3 marks]

(ii) Find the time taken to travel from A to B.

1.4 Exercise

Question 1

Additional Mathematics Examination Question from June 2007, Q5 (corrected) A car is travelling along a motorway with a velocity of 30 m s⁻¹. At the moment that it passes a point *A* the brakes are applied so that the car decelerates with constant deceleration.

When it reaches a point B, where AB = 300 m, the velocity of the car is 10 m s^{-1} . Calculate

(i) the constant deceleration

[3 marks]

(ii) the time taken to travel from A to B.

Question 2

Additional Mathematics Examination Question from June 2009, Q5 Parcels slide down a ramp.

Due to resistance the deceleration is 0.25 m s⁻²

(i) One parcel is given an initial velocity of 2 m s⁻¹ Find the distance travelled before the parcel comes to rest.

[3 marks]

(ii) A second parcel is given an initial velocity of 3 m s⁻¹ and takes 4 seconds to reach the bottom of the ramp. Find the length of the ramp.

Be careful: The parcel will be moving as it flies off the end of the ramp!

Question 3 Without looking them up, try to write out all five <i>suvat</i> equations from men	nory.
Question 4 Additional Mathematics Examination Question from June 2003, Q10 (corr A car, initially travelling with velocity 20 m s ⁻¹ , accelerates uniformly at 1. Find	
(i) the speed after 5 seconds	
	[2 marks]
(ii) the distance travelled in this time.	
	[2 marks]

Question 5

A particle moving in a straight line experiences a constant retardation of 6 m.s⁻² It passes a point, A, with initial velocity 25 m.s⁻¹

As it passes A a stopwatch is started.

(i) What will the stopwatch read as the particle first has a displacement of 28 metres from A?

- (ii) What will the stopwatch read when the particle has a displacement of 28 metres from A for the second time?
- (iii) There is a third moment when the particle is at a *distance* of of 28 metres from A.

Determine the stopwatch reading for this third moment.