
6.1 Velocity-Time Graphs #1

A cyclist leaves home H and rides along a straight road with a constant acceleration. After 10 seconds she has reached point A with a speed of 15 m.s⁻¹. She maintains this speed for a further 20 seconds until she reaches a point B. She now retards uniformly to rest at point C.

The whole journey takes 45 seconds.

(i) Draw the velocity-time graph for the journey.

(ii) What is the constant acceleration during the journey from H to A?

(iii) What is the uniform retardation during the journey from B to C?

(iv) How far down the road from Home is the cyclist when she stops?

6.2 Exercise

\sim	4 •	-
()ı	IDCTION	
\mathbf{v}	uestion	

	s moving with a speed of 20 m.s ⁻¹ when the driver sees a red light ahead. lies the brakes and stops in a distance of 30 metres.
(i)	Show the shape of the velocity-time graph with a sketch.
(ii)	How many seconds did the train take to come to rest?
(iii)	What was the deceleration of the train?
It then n	accelerates uniformly from rest with acceleration 1.5 m.s ⁻² for 12 seconds. noves with constant velocity for 16 seconds before retarding uniformly to rest. I distance travelled is 522 metres. Show this information on a velocity-time graph.
(ii)	What was the greatest velocity of the lorry ?
(iii)	What was the total time taken for the journey?

Question 3

Two stations, Knapford and Tidmouth, are 570 metres apart. A train starts from Knapford and accelerates uniformly for 16 seconds to a speed of 54 km.h⁻¹ which it maintains until it is 90 metres from Tidmouth. At this point

it slows down uniformly to stop at Tidmouth.

Sketch a velocity-time graph to show the motion of the train. (i)

(ii) Find the total time that the journey takes.

(iii) Find the deceleration of the train.

Question 4

Examination Question from January 2010, M1, Q2

An athlete runs along a straight road. She starts from rest and moves with constant acceleration for 5 seconds, reaching a speed of 8 m.s⁻¹.

This speed is then maintained for *T* seconds.

She then decelerates at a constant rate until she stops.

She has run a total of 500 metres in 75 seconds.

(a) Sketch a speed-time graph to illustrate the motion of the athlete.

[3 marks]

(\mathbf{b}) Calculate the value of T

Question 5

Two cyclists *A* and *B* are travelling in the same direction along a straight road. *B* is travelling at a speed of 12 m.s⁻¹ and *A* is overtaking *B* at a speed of 14 m.s⁻¹. At the moment when they are level they see a traffic light turn red 126 metres ahead. *A* cycles for *T* seconds then decelerates uniformly.

B cycles for 7 seconds and then decelerates uniformly.

A and B stop at the traffic light at the same instant.

(i) Sketch the speed-time graphs of the two cyclists on the same diagram.

(ii) How many seconds after seeing the traffic light turn red did it take the cyclists to stop?

(iii) Calculate the value of T