7.1 Velocity - Time Graphs #2

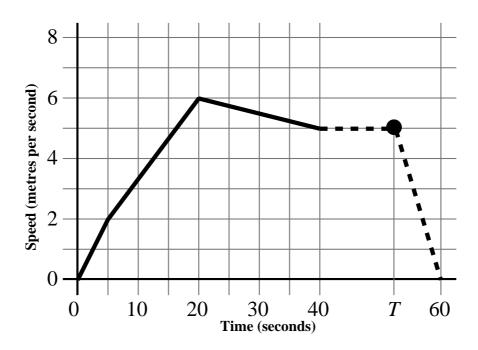
On a Velocity - Time graph

♦ The gradient represents acceleration.

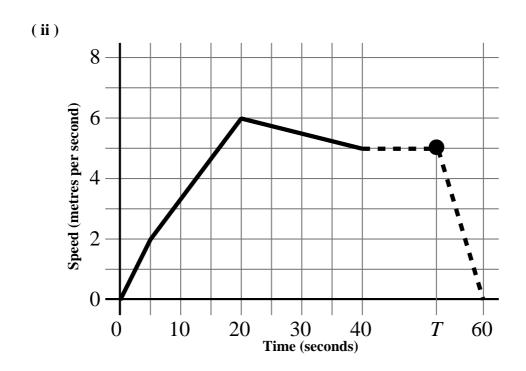
Furthermore

$$a = \frac{\Delta v}{\Delta t} \qquad \left(acceleration = \frac{change in velocity}{change in time}\right)$$

♦ Area under the graph represents distance


An Example

The velocity - time graph is of an orienteer's progress as she runs between two controls on a straight route.

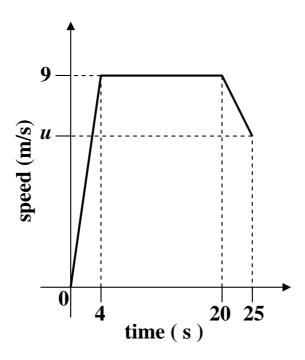

The distance between the controls is 240 metres.

The velocity-time graph shows her

- starting from rest
- (constant) acceleration for 5 seconds to a speed of 2 ms⁻¹
- (constant) acceleration for 15 seconds to a speed of 6 ms⁻¹
- (constant) deceleration for 20 seconds to a speed of 5 ms⁻¹
- moving with constant velocity for (T 40) seconds
- (constant) deceleration for (60 T) seconds
- stopping
- taking 60 seconds in total

- (i) What is the acceleration between t = 5 and t = 20 seconds?
- (ii) Determine the value of T

7.2 Exercise


\sim	4 •	-
()ı	IDCTION	
\mathbf{v}	uestion	

M1 Examination Question, November 2002, Q3 A car accelerates uniformly from rest to a speed of 20 ms⁻¹ in T seconds

The car then travels at a constant speed of 20 ms^{-1} for $4T$ seconds and finally decelerates uniformly to rest in a further 50 s .		
(a)	Sketch a speed-time graph to show the motion of the car.	
The to	tal distance travelled by the car is 1220 m	[2 marks]
(b)	Find the value of T	
		[3 marks]
(c)	Find the initial acceleration of the car.	

[2 marks]

Question 2M1 Examination Question, January 2005, Q3

A sprinter runs a race of 200 m.

Her total time for running the race is 25 s.

The sketch is of the speed-time graph for the motion of the sprinter.

She starts from rest and accelerates uniformly to a speed of 9 ms⁻¹ in 4 s.

The speed of 9 ms⁻¹ is maintained for 16 s and she then decelerates uniformly to a speed of u ms⁻¹ at the end of the race.

Calculate

(a) the distance covered by the sprinter in the first 20 s of the race,

(b)	the value of u ,	
		[4 marks]
(c)	the deceleration of the sprinter in the last 5 s of the race	

Question 3

M1 Examination Question, June 2005, Q5

A train is travelling at 10 ms⁻¹ on a straight horizontal track.

The driver sees a red signal 135 m ahead and immediately applied the brakes.

The train immediately decelerates with constant deceleration for 12 s, reducing its speed to 3 ms⁻¹.

The driver then releases the brakes and allows the train to travel at a constant speed of 3 ms⁻¹ for a further 15 s.

He then applies the brakes again and the train slows down with constant deceleration, coming to rest as it reaches the signal.

(a) Sketch a speed-time graph to show the motion of the train

[3 marks]

(**b**) Find the distance travelled by the train from the moment when the brakes are first applied to the moment when its speed first reaches 3 ms⁻¹

Question 4

M1 Examination Question, January 2012, Q6

A car moves along a straight horizontal road from a point A to a point B.

AB = 885 m

The car accelerates from rest at A to a speed of 15 ms⁻¹ at a constant rate a ms⁻²

The time for which the car accelerates is $\frac{1}{3}T$ seconds.

The car maintains the speed of 15 ms⁻¹ for T seconds.

The car then decelerates at a constant rate of 2.5 ms^{-2} stopping at B.

(a) Find the time for which the car decelerates

[2 marks]

(**b**) Sketch a speed-time graph for the motion of the car

(c)	Find the value of <i>T</i>	
		[4 marks]
(d)	Find the value of <i>a</i>	
		[2 marks]
(e)	Sketch an acceleration-time graph for the motion of the car	
		[3 marks]

Question 5

M1 Examination Question, January 2004, Q6

A train starts from rest at a station A and moves along a straight horizontal track.

For the first 10 s the train moves with constant acceleration 1.2 ms⁻²

For the next 24 s it moves at a constant acceleration 0.75 ms⁻²

It then moves with constant speed for *T* seconds.

Finally it slows down with constant deceleration 3 $\,\mathrm{ms^{-2}}$ until it comes to a rest at station B

(a) Show that, 34 s after leaving A, the speed of the train is 30 ms^{-1}

[3 marks]

(**b**) Sketch a speed-time graph to illustrate the motion of the train as it moves from *A* to *B*

(c)	Find the distance moved by the train during the first 34 s of its j	ourney from A
		[4 marks]
Th. 11.	Annua franc A da Dia 2 lana	[4 marks]
(d)	tance from A to B is 3 km Find the value of T	
		[4 marks]
	All examination questions are © Pearson Education Ltd and have appeared in the Edexcel GCE (A level) Applied Mathematics examination papers	
	These lesson notes are available from www.NumberWonder.co.uk They may be freely duplicated and distributed but copyright remains with the author	