

REARRANGING

In algebra, the golden rule for manipulating equations

"DO THE SAME TO THE WHOLE OF BOTH SIDES"

1.1 Introduction

From London, William is talking over a phone to his friend Dwain in New York. Dwain tells William that the temperature in New York is 59° F (Fahrenheit). William is only familiar with temperatures being expressed in ° C (Centigrade). Fortunately, he knows a formula to convert from Fahrenheit to Centigrade.

$$C = \frac{5(F-32)}{9}$$

In this formula we say that C is the subject.

William proceeds by substitution in the number 59 in place of F.

$$= \frac{5(59 - 32)}{9}$$
$$= \frac{5 \times 27}{9}$$
$$= 15 \,^{\circ}\text{C}$$

In continuing the conversation, William tells Dwain that it is much colder in London, "The temperature in London is a cold -5 °C". Dwain immediately wants to know what this is in °F.

William does not know the formula with F as the subject.

But he can work it out.

He can *change the subject* of the formula.

multiply both sides by 9
divide both sides by 5
add 32 to both sides
$$C = \frac{5(F-32)}{9}$$

$$9C = 5(F-32)$$

$$\frac{9C}{5} = F-32$$
divide both sides by 5
$$\frac{9C}{5} + 32 = F$$

$$F = \frac{9C}{5} + 32$$
add 32 to both sides
$$F = \frac{9C}{5} + 32$$

William now inserts London's 5 °C into this rearranged formula.

$$F = \frac{9C}{5} + 32$$

$$= \frac{9 \times (-5)}{5} + 32$$

$$= -9 + 32$$

$$= 21 \, ^{\circ}F$$

New York	−5 °C	15 °C
London	21 °F	59 °F

1.2 The Golden Rule

In algebra, there is one golden rule for manipulating all equations "DO THE SAME TO THE WHOLE OF BOTH SIDES"

1.3 Example

Question:

Showing full working, make x the subject of the equation,

$$3dx - 5m = 4$$

Solution:

add 5m to both sides
$$\begin{vmatrix}
3dx - 5m &= 4 \\
3dx &= 4 + 5m \\
divide both sides by 3d
\end{vmatrix}$$

$$x = \frac{4 + 5m}{3d}$$
add 5m to both sides
$$divide both sides by 3d$$

More succinctly:

$$\begin{vmatrix} 3dx - 5m = 4 \\ 3dx = 4 + 5m \end{vmatrix} + 5m$$

$$\begin{vmatrix} 3dx & = 4 + 5m \\ x & = \frac{4 + 5m}{3d} \end{vmatrix}$$

Note the use of "/" for "divide"

This is because when projected onto a white board ÷ is easily mistaken for +

1.4 Example

Question:

Showing full working, make x the subject of the equation,

$$7xw + 8 = 3k$$

Solution:

1.5 Exercise

Take care over how you set out your solutions, as demonstrated by the examples.

Question 1

Showing full working, make x the subject of the equation,

$$ax - b = 7$$

Question 2

Showing full working, make x the subject of the equation,

$$3c + wx = pqr$$

Showing full working, make *x* the subject of the equation,

$$4x - vw = 9$$

Question 4

Showing full working, make *x* the subject of the equation,

$$5 + 4bx + z = a$$

Showing full working, by first adding y^2 to both sides, make x the subject of,

$$7x - y^2 = 4z + 1$$

Question 6

Showing full working, by first expanding the brackets, make x the subject of,

$$4(2x + y) = 7$$

Showing full working, by first expanding the brackets, make x the subject of,

$$a(3x+b)=c$$

Question 8

Showing full working, by first subtracting y from both sides, make x the subject of,

$$\frac{x}{7} + y = 3z$$

Write your answer without any brackets.

Showing full working, by first subtracting 11 from both sides, make x the subject of,

$$11 + \frac{4x}{5} = z$$

Write your answer without any brackets.

Question 10

Showing full working, by first adding 7 to both sides, make x the subject of,

$$\frac{x+p^2}{q}-7=R$$