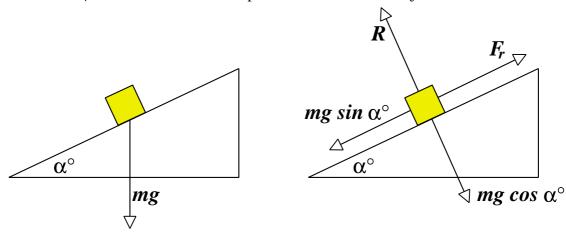
3.1 Limiting equilibrium

Consider the situation of a particle at rest on an incline.


In such situations the friction force that is calculated from $F_{r max} = \mu R$ is the maximum friction force that can be present without movement commencing. So,

$$0 \leq F_r \leq F_{r max}$$

We are mostly interested in a particle that is on the verge of moving - in limiting equilibrium - and for such a particle F_r takes on the maximum value.

3.2 How to find μ in "real life"

To find μ for a book on a table, tip the table until the book just starts to slide.

Perpendicular to the slope;

$$R = mg \cos \alpha$$

Parallel to the slope;

$$F_r = mg \sin \alpha$$

Link;

$$F_r = \mu R$$

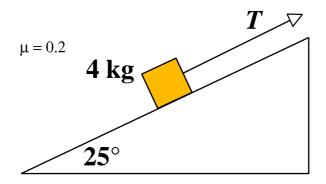
$$mg \sin \alpha = \mu mg \cos \alpha$$

$$\sin \alpha = \mu \cos \alpha$$

$$\mu = \frac{\sin \alpha}{\cos \alpha}$$

$$\mu = \tan \alpha$$

So μ is simply $\tan \alpha$.


Angle α is easy enough to measure, and $\tan \alpha$ can then be found from a calculator. Notice that we did not need to know the weight of the book.

This is a special situation in which no force, other than gravity, acted on the book.

3.3 When more than "just gravity" acts

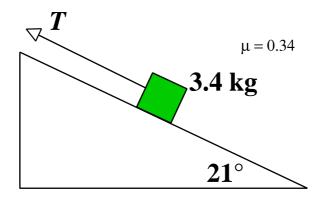
A box of mass 4 kg is on the verge of sliding down a rough slope, inclined at 25° to the horizontal, when restrained by a rope as shown.

The coefficient of friction between box and slope is 0.2

- (i) What is the weight of the box?
- (ii) The weight is to be resolved into component parts.
 - (a) What is the component parallel to the slope?
 - (**b**) What is the component perpendicular to the slope?
- (iii) Draw a good sized diagram showing all forces acting on the block except for weight.

In place of the weight, insert your two part (ii) answers.

- (iv) Calculate the normal reaction, R.
- (v) Calculate the friction force, F_r . Is F_r acting up or down the slope?
- (vi) Find the tension in the restraining rope.

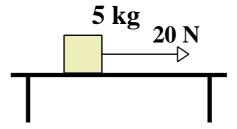

3.4 Exercise

In this exercise, where required, take the value of g as 9.8 m s⁻²

Question 1

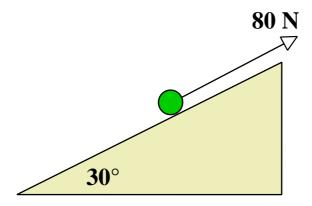
A box of mass 3.4 kg is on the verge of sliding **UP** a rough slope, inclined at 21° to the horizontal, when pulled by a rope as shown.

The coefficient of friction between box and slope is 0.34



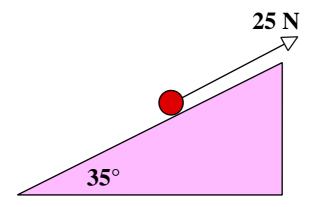
- (i) What is the weight of the box?
- (ii) The weight is to be resolved into component parts.
 - (a) What is the component parallel to the slope?
 - **(b)** What is the component perpendicular to the slope?
- (iii) Draw a good sized diagram showing all forces acting on the box except for weight.

In place of the weight, insert your two part (ii) answers.


- (iv) Calculate the normal reaction, R.
- (v) Calculate the friction force, F_r . Is F_r acting up or down the slope?
- (vi) Find the tension in the pulling rope.

A heavy book of mass 5 kg is acted on by a horizontal force of 20 N. The coefficient of friction, μ , between book and coffee table is 0.42

- (i) Calculate the normal reaction.
- (ii) Calculate the maximum possible friction force that could become available to prevent motion, and hence state if the 20 N force will cause the book to move or not.


A particle of mass 12 kg is at rest on a rough plane inclined at 30° to the horizontal. A force of 80 N acts upward, parallel to the line of greatest slope of the plane. The box is in limiting equilibrium, on the verge of moving up the plane.

Find

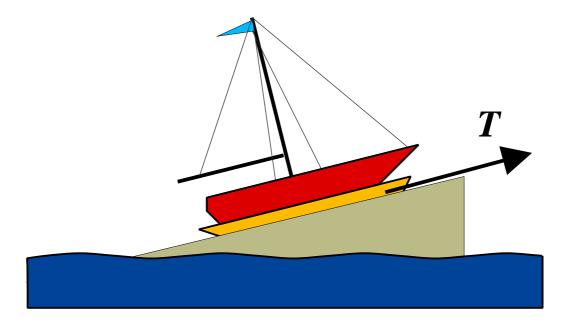
- (i) The friction force, F_r
- (ii) The normal reaction, R
- (iii) The coefficient of friction, μ

A box of mass 15 kg is at rest on a rough plane inclined at 35° to the horizontal. A force of 25 N acts upward, parallel to the line of greatest slope of the plane. The box is in limiting equilibrium, on the verge of moving down the plane.

Find

- (i) The friction force, F_r
- (ii) The normal reaction, R
- (iii) The coefficient of friction, μ

A yacht and cradle of mass 450 kg is held at rest on a slipway by a rope.


The yacht and cradle are modelled as a particle and the slipway considered to be a rough plane inclined at 15° to the horizontal.

The coefficient of friction between the particle and the plane is 0.2

The rope is modelled as a light, inextensible string.

The rope is considered to be parallel to a line of greatest slope of the plane.

The system is at rest but with the particle (yacht and cradle) in limiting equilibrium, on the verge of sliding down the slipway.

- (i) Draw a clear diagram showing all significant forces.
- (ii) Calculate the tension, T, in the rope.