
A-Level Applied Mathematics Mechanics : Statics : Year 2

7.1 Revision

Any solution based entirely on graphical or numerical methods is not acceptable

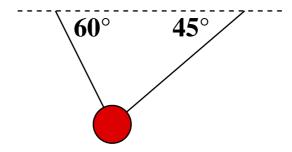
Marks Available: 50

Question 1

A man applies a horizontal force of 100 Newtons to a box of apples of mass 18 kg which is at rest on a rough horizontal floor. The coefficient of friction between the box and the floor is 0.6

(i) Calculate, in Newtons, the Normal Reaction of the floor on the box.

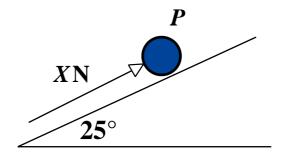
[2 mark]


(ii) What is the maximum force due to friction that could be available to prevent the box from starting to move

[2 mark]

(iii) Giving a reason, explain why the box will not move.

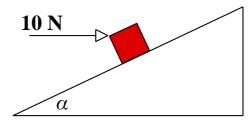
[2 marks]


(iv) Apples, each with a mass of 0.085 kg are thrown out of the box. How many apples would need to be thrown out before the box started to move?

A particle of mass 6 kg hangs in equilibrium, suspended by two light inextensible strings, inclined at 60° and 45° to the horizontal, as shown.

The particle is attached separately to each string so the tensions in the two strings can be different.

Find the tension in each of the strings.



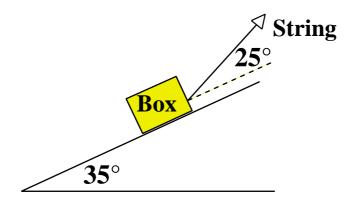
A particle, P, of mass 12 kg is on the verge of sliding up a rough slope inclined at 25° to the horizontal. A force of X Newtons, parallel to the plane, is acting on P as shown. The coefficient of friction between P and slope is 0.35.

(i) Draw a good sized diagram showing the forces acting on the particle and in which any force not parallel nor perpendicular to the plane is resolved into component parts which are.

[3 marks]

(ii) Determine the magnitude of the force, X

Tony, an ant, is trying to push a rock of mass 3 kg up a rough inclined plane with a horizontal force of magnitude 10 Newtons.



The plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{5}{12}$. The line of action of the force lies in the vertical plane containing the sledge and a line of greatest slope of the plane.

The coefficient of friction between the sledge and the inclined plane is μ .

(i) Show that if μ has its lowest possible value, Tony would not be able to stop the rock from sliding down the slope.

(ii)	Given that Tony is able to hold the rock is in equilibrium, find the minimum possible value that μ must be.
(iii)	[6 marks] Given that μ is 0.4, how many ants, including Tony, each pushing with a
	horizontal force of 10 Newtons, will be needed to push the rock up the slope?
	[6 marks]

A box of mass 10 kg rests on a plane inclined at an angle of 35° to the horizontal. The box is on the verge of sliding down the plane but is prevented from doing so by a string attached to the box that makes an angle of 25° with the inclined plane. The coefficient of friction between the box and the plane is 0.3

(i) Find the magnitude of the tension, T, in the string.

[7 marks]

(ii) Find the magnitude of the force of friction acting on the particle