
Set Theory and Probability II

3.1 Contingency Tables

(Also called Two-Way Tables and Crosstabs)

Here is a generalised two-hoop Venn Diagram;

Another useful problem solving tool is a Contingency Table, often called a Two-Way Table, or a Crosstabs;

	A	A'	Sum
В	$P(A \cap B)$	$P(A' \cap B)$	p(B)
<i>B'</i>	$P(A \cap B')$	$P(A' \cap B')$	p(B')
Sum	<i>p</i> (<i>A</i>)	p(A')	1

A couple of small advantages of such tables, in comparison with a Venn diagram are that the numbers are to hand to calculate "given that" probabilities;

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

and also those required to test for independence;

Independence
$$\Leftrightarrow P(A \cap B) = P(A) \times P(B)$$

3.2 Example

Two fair dice, one red and one green, are rolled.

Event *D* is the occurrence of the same number rolled on each dice; a "double".

Event *N* is the occurrence of a sum of 9 or more.

(i) Complete the two-way table with the appropriate probabilities.

	D	D'	Sum
N			
N'			
Sum			

[3 marks]

(ii) Show with the appropriate test that events D and N are not independent.

[2 marks]

(iii) Find the following "given that" probability;

$$P(D \mid N)$$

3.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 50

Question 1

The fans of a football club are asked if they think the manager should resign or stay. The results are presented in the two-way table below;

	Resign	Stay	Sum
Male	0.6	0.2	0.8
Female	0.1	0.1	0.2
Sum	0.7	0.3	1.0

- (a) If a fan is picked at random, find
 - (i) P(*Male*)

[1 mark]

(ii) the probability they are a male who thought the manager should stay

[1 mark]

(iii) P(Female | Resign)

[2 marks]

(**b**) What is the probability that a male fan, picked at random, thinks the manager should resign?

[2 marks]

(c) Amongst the fans, is thinking the manager should resign independent of being male? Give a reason for your answer.

[2 marks]

(i) Complete the following two-way table

	A	A'	Sum
В		0.4	
<i>B'</i>	0.3		
Sum	0.5		1.0

[2 marks]

(ii) Are events *A* and *B* independent? Give a calculation to support your answer.

[2 marks]

Question 3

The *Bog-Trotters* are a rambling group is made up of 63 women and 37 men.

A walking stick is used by 26 of the women and 18 of the men.

(a) Draw a two-way table to show this information.

[4 marks]

- (**b**) One rambler from the *Bog-Trotters* is chosen at random. Find;
 - (i) P(Uses a stick)

[1 mark]

(ii) P(Uses a stick | Female)

[1 mark]

(iii) P(Male | Uses a stick)

[1 mark]

Two fair dice, one red and one yellow, are rolled.

Event *E* is the occurrence of an even number rolled on each dice; an "even snap".

Event *R* is the occurrence of a higher score on the red dice than on the yellow.

(i) Complete the two-way table with the appropriate probabilities.

	E	E'	Sum
R			
R'			
Sum			

[3 marks]

(ii) Show with the appropriate test that events E and R are not independent.

[2 marks]

(iii) Find the following "given that" probability;

$$P(E \mid R)$$

[2 marks]

Complete the contingency table of probabilities given that events W and Z are statistically independent.

	W	W'	Sum
Z			0.25
Z'			
Sum	0.2		

[3 marks]

Question 6

(i) Complete the contingency table of probabilities.

	T	T'	Sum
V			0.4
V'		0.5	
Sum	0.3		

[2 marks]

(ii) Are events *T* and *V* independent? Give a calculation to support your answer.

[2 marks]

(iii) Are events *T* and *V* mutually exclusive? Give a calculation to support your answer.

[2 marks]

Two fair dice, one red and one green, are rolled.

Two events are defined as follows;

E: The sum of the two scores is Eight or more

L: At least one dice has rolled a score of One

(i) Complete the two-way table with the appropriate probabilities.

	E	<i>E'</i>	Sum
L			
L'			
Sum			

[2 marks]

(ii) Are events E and L independent? Give a reason for your answer.

[2 marks]

(iii) Are events E and L mutually exclusive? Give a reason for your answer.

[2 marks]

(iv) Find the following "given that" probability;

$$P(L' \mid E)$$

$\mathbf{\alpha}$	4 •	Ω
Ouc	estion	δ

Anna and Bella are sometimes late for school.

The events A and B are defined as follows;

A is the event that Anna is late for school.

B is the event that Bella is late for school.

$$P(A) = 0.3, P(B) = 0.7 \text{ and } P(A' \cap B') = 0.1$$

On a randomly selected day, find the probability that;

(i) both Anna and Bella are late to school

[2 marks]

(ii) Anna is late to school given that Bella is late to school

[2 marks]

Their teacher suspects that Anna and Bella being late for school is linked in some way. (iii) Comment on his suspicion, showing your working.

[3 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**"
© 2021 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk