4E.1 The Sum To Infinity Of A Geometric Progression

Remarkably, under certain conditions, an infinite addition of the following form can have an answer that is a fixed and finite value.

$$Sum = a + ar + ar^2 + ar^3 + ar^4 + ...$$

The individual terms in this sum form what is called a Geometric Progression with first term, a, and common ratio, r

The sum to infinity exists if -1 < r < 1 and is given by the formula;

$$Sum_{\infty} = \frac{a}{1 - r}$$

A famous example of such a sum is;

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots$$

In this famous example, a = 1 and r = 0.5

$$Sum_{\infty} = \frac{1}{1 - 0.5}$$
$$= 2$$

4E.2 Example

Tom and Jerry take turns to spin a fair coin.

The person to spin Heads first wins.

Tom goes first. What is the probability that he wins?

4E.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 50

Question 1

Consider each of these infinite addition sums.

Each has terms in Geometric Progression.

In each case state the value of the first term, a, and the value of the common ratio, r. Then determine the value of the sum using the formula for the sum to infinity.

(i) $A = 15 + 3 + 0.6 + 0.12 + 0.024 + \dots$

[2 marks]

(ii)
$$B = 4 + 3.2 + 2.56 + 2.048 + 1.6384 + ...$$

[2 marks]

(iii)
$$C = 8 + \frac{8}{3} + \frac{8}{9} + \frac{8}{27} + \frac{8}{81} + \frac{8}{243} + \dots$$

[2 marks]

(iv)
$$D = 2 + 0.2 + 0.02 + 0.002 + 0.0002 + ...$$

Q	uestion	2

Bill and Ben take turns to spin a coin, biased with probability 0.4 of landing Heads
The person to spin Heads first wins.
Bill goes first.

(i) Explain why the probability Bill wins on his second turn is $0.6 \times 0.6 \times 0.4$

[2 marks]

(ii) Show that the probability Bill wins on his third turn is 0.05184

[2 marks]

(iii) Using the sum to infinity formula, determine the probability Bill wins.

[3 marks]

Question 3

Lucy and Billy take turns to spin a coin, biased with probability 0.3 of landing Heads. The person to spin Heads first wins.

Lucy goes first.

What is the probability that Lucy wins?

Question 4Sid and Vicky are discussing whether to go to the cinema or to bingo.

They decide to take it in turns to roll a six sided die. Who rolls a six first gets to decide where they go.

Sid goes first.

(i) What is the probability that Sid will be the first to roll a 6?

[5 marks]

(ii) Is this method of resolving a dispute fair?
Give a reason for your answer.

[2 marks]

Question 5After another argument, Sid and Vicky decide to use a twelve sided die.

Sid again goes first.

(i) What is the probability that Sid will be the first to roll a 12?

[5 marks]

(ii) Is this method of resolving a dispute more or less fair than using a six sided die?

[1 mark]

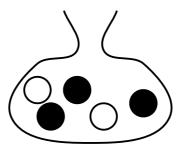
(iii) Is there another platonic solid that would make a more fair die?

[1 mark]

Question 6

Sam and Joe take turns to spin a coin, biased with probability β of landing Heads. The person to spin Heads first wins.

Sam goes first.


(i) What is the probability in terms of β that Sam wins?

[6 marks]

Try to find a value of β which ensures that Sam and Joe have equal chances in the game, if Sam goes first.

Question 7

Two players, Fred and Harry, take turns to draw a ball from a bag and replace it. The bag contains two white and three black balls.

The first player, Fred, has to draw a white ball to win.

The second player, Harry, has to draw a black ball to win.

(i) Find the probability that Fred will win.

[7 marks]

(ii) Which player has the better chance of winning?

[1 mark]