Applications of Trigonometry

5.1 Revision

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available: 40

Question 1

Convert the following angles, written in radians, into their degrees equivalent,

- $(ii) \qquad \frac{5\pi}{6} \qquad \qquad (iii) \qquad \frac{13\pi}{12}$

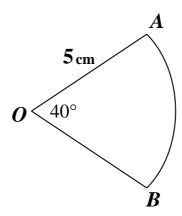
[3 marks]

Question 2

Convert the following angles, written in degrees, into their radian equivalent. Give exact answers in terms of π .

- 45° (i)
- 15° (ii)
- 330° (iii)

[3 marks]


Question 3

Solve the following equation over the interval $0 \le x \le 2\pi$

Give exact answers in terms of π

$$2\cos\left(2x + \frac{\pi}{8}\right) = \sqrt{2}$$

A-Level Examination question from June 2019, Paper 2, Q3

The diagram shows a sector AOB of a circle with centre O, radius 5 cm and angle $AOB = 40^{\circ}$.

The attempt of a student to find the area of the sector is shown below,

Area of sector =
$$\frac{1}{2}r^2\theta$$

= $\frac{1}{2} \times 5^2 \times 40$
= 500 cm^2

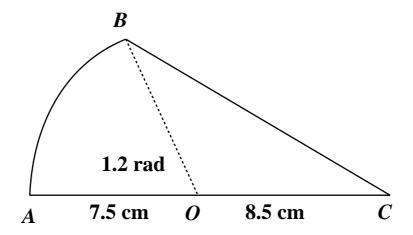
(a) Explain the error made by this student.

[1 mark]

(**b**) Write out a correct solution.

(i) When θ is small and measured in radians, use the small angle approximations to show that,

$$\frac{1 - \cos 3\theta}{\theta \tan 2\theta} \approx \frac{9}{4}$$


[4 marks]

(ii) When $\theta = 0.1^{\circ}$ (about 6°) what is the percentage error introduced by using the small angle approximations?

A-Level Examination question from June 2018, Paper 2, Q7 (i) Solve the equation,

$$4\sin x = \sec x \qquad \text{for} \quad 0 \le x < \frac{\pi}{2}$$

Question 7A-Level Official Mock Examination Question from 2019, Paper 1, Q2

The shape *AOCBA*, shown, consists of a sector *AOB* of a circle centre *O* joined to a triangle *BOC*.

The points A, O and C lie on a straight line with AO = 7.5 cm and OC = 8.5 cm.

The size of angle *AOB* is 1.2 radians.

Find, in cm, the perimeter of AOCBA, giving your answer to one decimal place.

A-Level Examination question from June 2010, C3, Q3

(a) Express $5 \cos x - 3 \sin x$ in the form $R \cos (x + \alpha)$ where R > 0 and $0 < \alpha < \frac{1}{2} \pi$

(b)	Hence, or otherwise, solve the equation
	$5\cos x - 3\sin x = 4$
	for $0 \le x < 2\pi$, giving your answers to 2 decimal places.