
Year 1

~ Statistics ~

STATISTICAL DISTRIBUTIONS

Featuring

The Binomial Distribution

Statistical Distributions: Year 1

1.1 The Concept of a Random Variable

When a standard six-face dice is rolled, the result can vary at random between six *discrete* possible outcomes, 1, 2, 3, 4, 5 or 6

The list of possible outcomes is called the *sample space*.

We can assign a *random variable*, *X*, to the event of rolling the dice.

If the dice is fair,

$$P(X = 1) = \frac{1}{6}$$

$$P(X = 2) = \frac{1}{6}$$

$$P(X = 3) = \frac{1}{6}$$

$$P(X = 4) = \frac{1}{6}$$

$$P(X = 5) = \frac{1}{6}$$

$$P(X = 6) = \frac{1}{6}$$

A far more succinct way of saying this is to write it as a probability mass function

$$P(X = x) = \frac{1}{6}, x = 1, 2, 3, 4, 5, 6$$

This is showing how the possible probabilities are distributed over the sample space. In this case, because all of the probabilities are the same, $\frac{1}{6}$, this particular statistical distribution is known as a *discrete uniform probability distribution*

For all discrete probability distributions,

$$\sum P(X = x) = 1$$

Example

When two fair coins are tossed, the probability distribution for the number of tails, x, can be described in the table;

X	0	1	2
P(X=x)	0.25	0.5	0.25

• Notice that writing out a table like this is an easy alternative way of giving the distribution rather than trying to construct a probability mass function.

Example

A biased four-faced dice with faces numbered 1, 2, 3 and 4 is rolled. The number on the bottom-most face is modelled as a random variable *X* Given that

$$P(X = x) = \frac{x}{k}$$

(i) Find the value of k

(ii) Give the probability distribution of X by completing the following table;

X	1	2	3	4
P(X=x)			0.3	

(iii) Find $P(X \ge 3)$

(iv) Determine P(1 < X < 4)

(v) What is P(X = 5)?

1.2 Exercise

Question 1

A discrete random variable *X* has the probability distribution shown in the table

Х	1	2	3	4
P(X=x)	0.33	0.17	k	0.24

Find the value of k

Question 2

A discrete random variable *X* has the probability distribution shown in the table

X	1	2	3
P(X=x)	0.4 - a	а	0.3 + 2a

Find the value of a

A biased four-faced dice with faces numbered 1, 2, 3 and 4 is rolled. The number on the bottom-most face is modelled as a random variable *X* Given that

$$P(X = x) = \frac{k}{x}$$

- (i) Find the value of k
- (ii) Give the probability distribution of X by completing the following table;

х	1	2	3	4
P(X=x)			0.16	

- (iii) Find $P(X \ge 3)$
- (iv) Determine $P(2 \le X < 4)$
- (v) What is P(X < 1)?

Question 4

The discrete random variable X has the following probability distribution

x	1	5	9
P(X=x)	а	b	С

It is known that

$$P(X < 4) = P(X > 4)$$

and

$$P(X \le 5) = 2P(X > 5)$$

Find the values of a, b and c

When three fair coins are tossed, the probability distribution for the number of tails, x, can be described in a table;

X	0	1	2	3
P(X=x)				

Complete the table.

Question 6

The discrete random variable *X* has a probability function

$$P(X = x) = \begin{cases} k & x = 1, 3 \\ k(x-1) & x = 2, 4 \end{cases}$$

where k is a constant

- (i) Find the value of k
- (ii) Find P(X>1)

Question 7

The discrete random variable *X* has a probability function

$$P(X = x) = \left\{ \begin{array}{ccc} \left(\frac{1}{2}\right)^{x} & x = 1, 2, 3, 4, 5 \\ k & x = 6 \end{array} \right\}$$

where k is a constant

Find the value of k

A fair coin is tossed repeatedly until a head appears.

The random variable *T* represents the number of tosses.

Complete the following table to show the probability distribution of T

х	1	2	3	4	5	> 5
P(T=x)						

Question 9

The discrete random variable *X* has a probability function

$$P(X = x) = \begin{cases} 0.1 & x = 1, 2 \\ k & x = 3, 4 \\ 0.2 & x = 5 \end{cases}$$

where k is a constant

- (i) Find the value of k
- (ii) Construct a table giving the probability distribution of X

(iii) Find $P(2 \le X < 5)$

A biased coin is tossed until a head appears or it is tossed four times where

$$P(Head) = \frac{2}{3}$$

The random variable T represents the number of tosses Show in a table the probability distribution of T

Question 11

In the game of Monopoly two dice are spun and the sum of the pips showing found. Find a probability mass function for the distribution of the form

$$P(X = x) = \begin{cases} k(x-a) & x = 2, 3, 4, 5, 6, 7 \\ k(b-x) & x = 8, 9, 10, 11, 12 \end{cases}$$

where a, b and k are constants that you have determined