2.1 Investigating Binomial Probability

Binomial Probability means 'two state' probability, and thus far the obvious real life situation that this models is the flipping of a coin.

2.2 A Coin Flipping Example

A biased coin is weighted such that it has a probability of 0.36 of landing tails. It is flipped 8 times. What is the probability that it lands tails exactly twice?

нннннтт	To answer this question we begin by wanting to know how many different ways 2 tails and 6 heads can occur.					
НННННТНТ	, ,					
ННННТТН	Method 1: List them.					
	Observe that the list has 28 entries.					
H H H H T H H T	This takes a long time and is tricky to get correct.					
H H H H T H T H						
HHHHTTHH	Method 2: Use Pascal's Triangle.					
	observe that Row 8, Column 2 is 28.					
HHHTHHHT	Less time but still a big job to get just one number.					
HHHTHHTH	1					
HHHTHTHH	1 1					
HHHTTHHH	1 2 1					
	1 3 3 1					
HHTHHHHT	1 4 6 4 1					
HHTHHHTH	1 5 10 10 5 1					
HHTHHTHH	1 6 15 20 15 6 1					
HHTHTHHH	1 7 21 35 35 21 7 1					
HHTTHHHH	1 8 28 56 70 56 28 8 1					
НТННННТ	Method 3 : Use a calculator.					
НТНННТН	${}^{8}C_{2}=28$					
НТНННТНН						
НТННТННН	Having got the 28					
НТНТНННН	Each of the 28 items in the list will have the same value					
НТТННННН	of $0.36^2 \times 0.64^6$					
THHHHHHT	Thus the calculation is;					
ТННННТН	$28 \times 0.36^2 \times 0.64^6 = 0.249$					
ТННННТНН	$= 28 \times 0.1296 \times 0.0687$					
ТНННТННН	= 0.249 (give answers to 3 decimal places)					
ТННТННН	-					
ТНТННННН	So, when this biased coin is flipped 8 times, there is a					
ТТННННН	25% probability that it will land tails exactly twice.					

2.3 Exercise

Question 1

Here is Pascal's Triangle, left justified.

```
1
   1
   2
       1
   3
       3
           1
1
   4
              1
   5
1
       10 10 5
                   1
       15 20 15
                   6 1
1
   7
       21 35 35 21 7
                         1
       28 56 70 56 28
                             1
```

- (i) Circle the entry in Row 7, Column 5.

 Notice this is in the 8th row and the 6th column!
- (ii) Use your calculator to determine ⁷C₅

 This should be your part (i) answer.

Question 2

Here is Pascal's Triangle, left justified.

```
1
1
   1
   2
       1
1
   3
       3
           1
   4
       6
           4
              1
1
   5
       10 10 5
                   1
       15 20
              15
   7
       21 35 35 21 7
1
                         1
       28 56 70 56 28
                             1
       36 84 126 126 84 36
1
   9
                                1
```

- (i) Circle the entry in Row 4, Column 0
- (ii) Circle the entry in Row 5, Column 5
- (iii) Circle the entry in Row 9, Column 3
- (iv) Find a solution pair (n, r) to

$$^{n}C_{r} = 70$$

Question 3

Use your calculator to determine ${}^{13}C_5$

Question 4

A coin is flipped 6 times.

- (i) Describe which calculator buttons you would press in order to determine the number of ways exactly 2 tails could be obtained?
- (ii) Write out enough of Pascal's Triangle so that you can then draw a circle around the number in it, corresponding to your part (i) answer.

Question 5

A coin is flipped 20 times.

In how many ways can exactly 13 tails be obtained?

HINT: Use a calculator.

Question 6

A coin is flipped 40 times.

In how many ways can exactly 5 heads be obtained?

Question 7

A biased coin is weighted such that it has a probability of 0.45 of landing tails. It is flipped 8 times. What is the probability that it lands tails exactly thrice? Give your answer to 3 decimal places.

Ouestion 8

A typist has a probability of 0.99 of typing each letter in a sentence correctly. What is the percentage probability of exactly two mistakes in a sentence containing 180 letters, if mistakes are made at random? Give your answer to 3 decimal places.

Ouestion 9

In a box of SmartiesTM there are eight different colours which normally occur in equal proportions. Sebastian is given 24 SmartiesTM, and blue ones are his favourite. Assume these come from a very large box.

- (i) How many blue SmartiesTM would he expect to get?
- (ii) What is the probability that he gets this number?
- (iii) What is the probability that he gets fewer than expected?

- (iv) What is the probability that he gets more than expected?
- (\mathbf{v}) Explain why the assumption was made that the 24 SmartiesTM given to Sebastian came from a very large box ?

Question 10

- (i) Determine 6C_2
- (ii) Determine 6C_4
- (iii) Explain, with the help of Pascal's Triangle, why ${}^6C_2 = {}^6C_4$

(iv) Explain, in your own words, why ${}^{n}C_0 = {}^{n}C_n$

- (v) Explain, in your own words, why ${}^{n}C_{1} = {}^{n}C_{n-1}$
- (vi) What formula can be written down for ${}^{n}C_{m}$ that generalises the observations made above ?

The next question is about obtaining the probability distribution curve for a simple coin flipping situation.

Question 11

A biased coin is weighted such that it has a probability of 0.4 of landing tails. It is flipped 6 times.

- (i) Show that the probability of exactly 4 tails being obtained is 0.138. i.e. About 14% probable.
- (ii) Work out the probability of exactly 0, 1, 2, 3, 5 and 6 tails being obtained. Present your solutions in the table below.

N° of tails	0	1	2	3	4	5	6
Probability %					14		

(iii)	Present your table of results as a bar chart.				