

Lesson 2

A-level Applied Mathematics Statistics : Hypothesis Testing : Year 1

2.1 A Crucial Result

When thought about in the right way, the following result is obvious. None-the-less it is a most useful result to have firmly in mind when working on problems involving a hypothesis test.

$$P(X \geq k) = 1 - P(X \leq k-1)$$

Proof:

In the following diagram,

the red represents $P(X \geq k)$

the green represents 1

the lilac represents $P(X \leq k-1)$

from which the claimed result follows.

x	$P(X = x)$			
0	$P(X = 0)$			
1	$P(X = 1)$			
2	$P(X = 2)$			
3	$P(X = 3)$			
...	...			
$k-1$	$P(X = k-1)$			
k	$P(X = k)$			
$k+1$	$P(X = k+1)$			
...	...			
n	$P(X = n)$			

The result is useful because the printed tables of cumulative binomial probabilities are only of the form $P(X \leq a)$ but a question may ask for $P(X \geq b)$. Some calculators (but not all) offer both options.

2.2 An Example Using The Crucial Result

Given that $X \sim B(25, 0.4)$, determine $P(X \geq 9)$

2.3 “Spot On™” Example

The standard skin cream treatment for a particular medical skin condition has 0.8 probability of success.

Dr Spot has undertaken research in this area and has produced a new skin cream, “Spot On™”, which has been successful with 28 out of 30 patients in a medical trial. Dr Spot claims that the new cream is a 'medical advance'; an improvement on the standard skin cream treatment.

Test, at the 5 % significance level, the claim made by Dr Spot.

2.4 Exercise

Question 1

A single observation, x , is taken from a binomial distribution $B(40, p)$ where p is thought to be 0.25

(i) What is the expected value of x ?

(ii) The value of x obtained is higher than expected, $x = 15$.

Use this observation to test $H_0 : p = 0.25$ against $H_1 : p > 0.25$

Use a 5 % significance level.

Question 2

A single digit random number generator, generates integers between 0 and 9

It is suspected of being biased in favour of the number 0

It is about to generate 40 random digits.

(i) How many 0s are expected, assuming the random number generator is not biased ?

(ii) Set up a hypothesis test, by clearly stating the null hypothesis and the alternative hypothesis.

(iii) Here are the 40 numbers generated;

6	1	0	8	4	1	0	0	7
3	0	3	9	5	9	7	9	6
8	8	0	7	3	7	2	6	0
4	8	9	1	3	4	8	1	9
2	0	6	0					

Is there statistical evidence at the 5 % significance level, to support the suspicion ?

Question 3

A psychologist is doing research in the colour preferences of five year old girls. In one experiment he offers each of 20 girls a choice from three otherwise identical balls; one pink, one yellow and one blue.

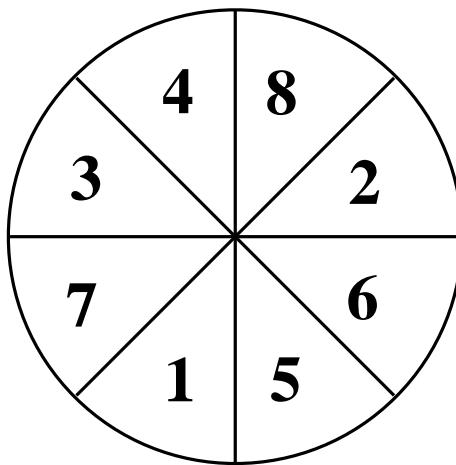
Ten of the girls choose the pink.

He deduces that, of these three colours, five year old girls have a preference for pink. Is this conclusion justified ?

In your answer clearly state the distribution used along with the null and the alternative hypothesis employed and the significance level used.

Question 4

A dice is rolled 30 times.


(i) How many rolls of a six are expected ?

(ii) What is the fewest number of rolls of a six needed to persuade you, at the 5 % significance level, that the dice is biased in favour of a six ?

Take care with 'the crucial result' in giving your final answer.

Question 5

A spinner with eight identical octagonal numbered sectors (as shown) is to be spun 48 times. It is suspected of being biased in favour of the number 3 sector.

(i) What is the expected number of 3s, assuming the spinner is not biased ?

(ii) What is the fewest number of 3s needed to persuade you, at the 5 % significance level, that the spinner is biased in favour of a 3 ?
Clearly state the null and alternative hypothesis used.

The ***critical region*** is the region of the probability distribution which, if the test statistic falls within it, would cause the null hypothesis to be rejected.

(iii) State the critical region for question 5

The ***critical value*** is the first value to fall inside of the critical region.

(iv) State the critical value for question 5

(v) When the spinner is spun, sure enough, more 3s than the expected number are obtained. In fact, 15 of the 48 spins resulted in a 3. Without further calculation, does this observation cause the null hypothesis to be rejected or not ?

Question 6

A random variable, X , has a distribution $X \sim B(30, 0.35)$.

With $H_0 : p = 0.35$ against $H_1 : p > 0.35$ and using a 5 % level of significance, find the critical region of this test.

Question 7

Given a binomial distribution $X \sim B(n, p)$, explain what is meant by;

(i) A hypothesis test

(ii) A null hypothesis

(iii) A critical value

(iv) An acceptance region

(v) A 5 % significance level in a one tailed test