

Grade Grabber 2

*Any solution based entirely on graphical
or numerical methods is not acceptable*

Marks Available : 26

Question 1

A geometric series has first term $\sin 2\theta$ and common ratio $\cos 2\theta$

where $0 < \theta < \frac{\pi}{4}$

Show that the sum to infinity of this series is $\cot \theta$

[4 marks]

Question 2

Consider the equation;

$$13 \sin \theta + 8 \cos \theta = 11 \quad 0 \leq \theta \leq \frac{\pi}{2}$$

This question is about solving this equation in two different ways, one approximate, the other exact.

(a) You are reminded that if θ is small and measured in radians,

$$\begin{aligned} \bullet \quad \sin \theta &\approx \theta & \bullet \\ \bullet \quad \cos \theta &\approx 1 - \frac{\theta^2}{2} & \bullet \\ \bullet \quad \tan \theta &\approx \theta & \bullet \end{aligned}$$

Use the small angle approximations to show that;

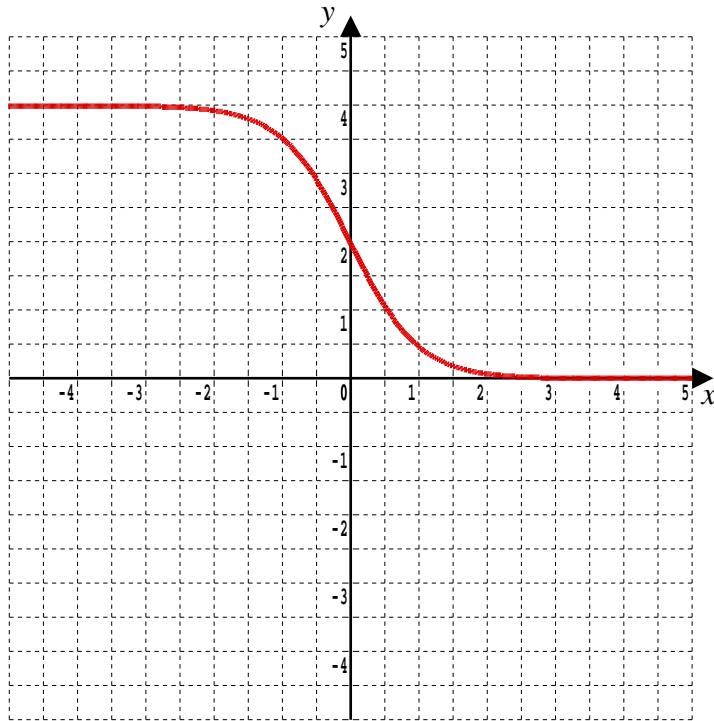
$$4\theta^2 - 13\theta + 3 = 0$$

and hence find a valid approximate solutions to

$$13 \sin \theta + 8 \cos \theta = 11 \quad 0 \leq \theta \leq \frac{\pi}{2}$$

[4 marks]

(b) Assume that


$$13 \sin \theta + 8 \cos \theta = R \sin (\theta + \alpha) \quad 0 \leq \alpha \leq \frac{\pi}{2}$$

Determine the value of α and the value of R and hence solve

$$13 \sin \theta + 8 \cos \theta = 11 \quad 0 \leq \theta \leq \frac{\pi}{2}$$

[4 marks]

Question 3

The graph shows a plot of the curve with equation

$$y = \frac{4}{e^{2x} + 1} \quad x \in R$$

The area of a finite region, bounded by the curve, the y -axis, the x -axis, and the line with equation $x = 0.5$ is of interest.

(i) On the diagram, shade in the area of interest.

[1 mark]

(ii) Use the substitution $u = e^{2x}$ to show that the area of interest can be given by

$$\int_a^b \frac{2}{u(u+1)} du$$

where a and b are constants to be found

[3 marks]

(iii) Hence use algebraic integration to show that the exact area of the region of interest is

$$Area = \ln\left(\frac{2e}{e + 1}\right)^2$$

[5 marks]

Question 4

One root of the following equation is 2;

$$x^3 + kx + 4 = 0$$

(i) Find the value of k

[1 mark]

(ii) Find the exact values of the other two roots.

[4 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School

It may be freely duplicated and distributed, unaltered, for non-profit educational use

In October 2020, Shrewsbury School was voted “**Independent School of the Year 2020**”

© 2025 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from MHHShrewsbury@Gmail.com