

Grade Grabber 5

*Any solution based entirely on graphical
or numerical methods is not acceptable*

Marks Available : 30

Question 1

The gradient of a curve at any point (x, y) on the curve is inversely proportional to the product of x and y . The curve passes through the point $(1, 1)$ and at this point the gradient of the curve is 7.

Form a differential equation in x and y and solve this equation to express y^2 in terms of x

[7 marks]

Question 2

Relative to a fixed origin O , the points P and Q are such that

$$\overrightarrow{OP} = \begin{pmatrix} 7 \\ 12 \\ -1 \end{pmatrix} \quad \overrightarrow{OQ} = \begin{pmatrix} 11 \\ 2 \\ a \end{pmatrix}$$

where p is a constant, and the points R and S are such that

$$\overrightarrow{QR} = \begin{pmatrix} 3 \\ -16 \\ 12 \end{pmatrix} \quad \overrightarrow{PS} = \begin{pmatrix} 1 \\ -11 \\ 16 \end{pmatrix}$$

(i) Find the position vector of the point S

[2 marks]

(ii) Find \overrightarrow{OR} in term of a

[2 marks]

(iii) Find \overrightarrow{SR} in term of a

[2 marks]

(iv) Find \overrightarrow{PQ} in term of a

[2 marks]

(v) Given that \overrightarrow{SR} is parallel to \overrightarrow{PQ} , find the value of a

[3 marks]

Question 3

Two trigonometry identities involving $\cos^2 \theta$ and $\sin^2 \theta$ are;

$$\cos^2 \theta + \sin^2 \theta = p$$

$$\cos^2 \theta - \sin^2 \theta = q$$

where p is a constant and q is a trigonometric function in θ

(i) Write out the two identities with p and q replaced appropriately

[2 marks]

(ii) Treating the two identities as simultaneous equations, combine them by addition to obtain an expression for $\cos^2 \theta$

[2 mark]

(iii) Hence, or otherwise, evaluate

$$\int_0^{\frac{\pi}{2}} \cos^2 \theta \, d\theta$$

[3 marks]

Question 4

Given that

$$x = -3 \cot y \quad -\frac{\pi}{2} < y < \frac{\pi}{2}$$

show that

$$\frac{dy}{dx} = \frac{a}{x^2 + b}$$

where a and b are integer constants to be found

[5 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School

It may be freely duplicated and distributed, unaltered, for non-profit educational use

In October 2020, Shrewsbury School was voted “**Independent School of the Year 2020**”

© 2025 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from MHHShrewsbury@Gmail.com