1.4 Homework (Horizontal Projection)

A-Level Applied Mathematics : Mechanics : Year 2

Projectiles (Kinematics III)

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 18

Question 1

In 1971, astronaut David Scott conducted a mechanics experiment on the moon, where there is no atmosphere. From his right hand he dropped a metal hammer whilst simultaneously dropping from the same height a feather from his left. Which one of the following options describes what will happen next?

- A The hammer and the feather will float about, weightless
- **B** The feather will fall to the surface of the moon fastest
- C Both hammer and feather will fall to the surface arriving at the same time
- **D** The hammer will fall to the surface of the moon fastest

Question A partice (i)	le is projected horizontally with a velocity of 30 m s ⁻¹ Find the horizontal and vertical components of the displacement of the particle from the point of projection after 3 seconds.
(ii)	[3 marks] Find the distance of the particle from the point of projection after 3 seconds.
-	In 3 le is projected horizontally from the top edge of a seacliff with speed 8 m s ⁻¹ the sea with a speed of 20 m s ⁻¹ Show, by using the theorem of Pythagoras, that the vertical component of the velocity with which the particle enters the sea is -18.33 m s ⁻¹
	[2 marks]

(ii) Calculate the time of flight.

[2 marks]

(iii) Calculate the height of the cliff at the point from which the particle was launched.

[3 marks]

Question 4

A horizontal pipe discharges sewage with initial velocity of 4 m $\rm s^{-1}$ What is the velocity of a lump of sewage 1.75 seconds later as it enters a cesspit where is will be treated ?

[5 marks]