3.1 Examination Questions on Angled Launch

There will almost certainly be an Angled Launch projectiles question in the examination. In such questions, unless told otherwise, the unit vectors \mathbf{i} and \mathbf{j} are in a vertical plane, \mathbf{i} being horizontal and \mathbf{j} being vertically upwards.

3.2 The Theory

Horizontally as there is no acceleration, the model is simply;

$$Distance = Speed \times Time$$

Vertically as there is constant acceleration due to gravity of magnitude 9.8 m s⁻² the *suvat* equations apply;

$$v = u + at$$

$$s = vt - \frac{1}{2}at^{2}$$

$$u$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v$$

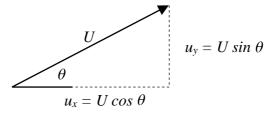
$$s = \left(\frac{v + u}{2}\right)t$$

$$a$$

$$v^{2} = u^{2} + 2as$$

$$t$$

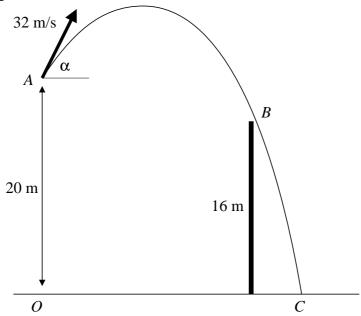
s = displacement


 $u = initial \ velocity$

 $v = final\ velocity$

a = acceleration (constant)

t = time


Between Horizontal and Vertical

When a particle is launched with a speed U at an angle θ ,

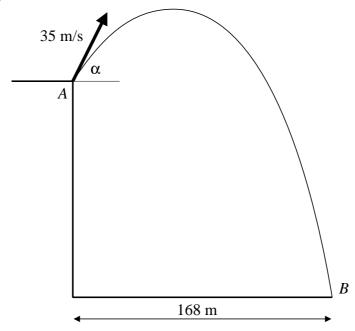
- the component of the initial velocity in the x-axis direction is $u_x = U \cos \theta$
- the component of the initial velocity in the y-axis direction is $u_y = U \sin \theta$

3.3 Example

A particle P is projected from a point A with speed 32 m s⁻¹ at an angle of elevation α , where $\sin \alpha = \frac{3}{5}$. The point O is on horizontal ground, with O vertically below A and OA = 20 metres. The particle P moves freely under gravity and passes through a point B which is 16 metres above the ground, before reaching the ground at the point C.

Calculate

(a) The time of flight from A to C


(b)	the distance OC	
		[3 marks]
(c)	the speed of P at B	
		[4 marks]
(d)	the angle that the velocity of P at B makes with the horizontal	[4 marks]
(u)	the differential the velocity of 1 at 2 makes with the north-orient	
		[3 marks]

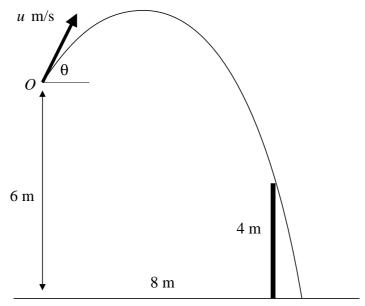
3.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 39

Question 1

A golf ball P is projected with speed 35 m s⁻¹ from a point A on a cliff above horizontal ground.


The angle of projection is α to the horizontal, where $\tan \alpha = \frac{4}{3}$

The ball moves freely under gravity and hits the ground at the point B.

(\mathbf{a}) Find the greatest height of P above the level of A

The horizontal distance from A to B is 168 metres.				
(b)	Find the height of <i>A</i> above the ground.			
		[6 marks]		
(c)	Find the speed of <i>P</i> as it hits the ground at <i>B</i>			
		[3 marks]		
		[J marks]		

Question 2A-Level Examination Question from January 2013, M2, Q6 (Edexcel)

A ball is thrown from a point O, which is 6 metres above horizontal ground. The ball is projected with speed u m s⁻¹ at an angle θ above the horizontal. There is a thin vertical post which is 4 metres high and 8 metres horizontally away from the vertical through O. The ball passes just above the top of the post 2 seconds after projection. The ball is modelled as a particle.

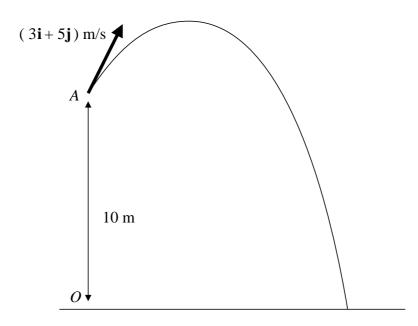
(a) Show that $\tan \theta = 2.2$

(\mathbf{b}) Find the value of u

[2 marks]

The ball hits the ground T seconds after projection.

(\mathbf{c}) Find the value of T


[3 marks]

Immediately before the ball hits the ground the direction of motion of the ball makes an angle α with the horizontal.

(**d**) Find α

Question 3

A-Level Examination Question from January 2011, M2, Q6 (Edexcel)

At time t = 0, a particle P is projected from the point A which has position vector $10\mathbf{j}$ metres with respect to a fixed origin O at ground level. The ground is horizontal. The velocity of projection of P is $(3\mathbf{i} + 5\mathbf{j})$ m s⁻¹. The particle moves freely under gravity and reaches the ground after T seconds.

(a) For $0 \le t \le T$, show that, with respect to O, the position vector, r metres, of P at time t seconds is given by

$$r = 3t \,\mathbf{i} + (10 + 5t - 4.9 \,t^2) \,\mathbf{j}$$

[3 marks]

(**b**) Find the value of T

[3 marks]

(c)	Find the velocity of P at time t seconds $(0 \le t \le T)$	
When <i>I</i> (d)	P is at the point B , the direction of motion of P is 45° below the hor Find the time taken for P to move from A to B	[2 marks] izontal.
(e)	Find the speed of P as it passes through B	[2 marks]
		[2 marks]