4.1 The Flight Path

A particle is projected from a point with speed u m s⁻¹ at an angle of elevation θ . It moves freely under gravity. When the particle has moved a horizontal distance of x metres, its height above the point of projection is y metres.

The Flight Path has equation

$$y = x \tan \theta - \frac{g x^2}{2 u^2} \left(1 + \tan^2 \theta \right)$$

where g is the magnitude of the acceleration due gravity, 9.8 m s⁻²

Proof

(an examination question may ask for this proof)

Horizontally : $u_H = u \cos \theta$

Vertically : $u_V = u \sin \theta$

For the horizontal motion,

Distance = speed × time

$$x = u \cos\theta \times t$$

$$t = \frac{x}{u \cos\theta}$$

For the vertical motion,

$$s = ut + \frac{1}{2}at^{2}$$

$$y = u \times \sin\theta \times t + \frac{1}{2} \times (-g) \times t^{2}$$

$$= u\sin\theta \times \frac{x}{u\cos\theta} - \frac{1}{2}g \times \left(\frac{x}{u\cos\theta}\right)^{2}$$
But $\tan\theta = \frac{\sin\theta}{\cos\theta}$ and $\sec\theta = \frac{1}{\cos\theta}$

$$\therefore y = x\tan\theta - \frac{gx^{2}}{2u^{2}}\sec^{2}\theta$$
But $\sec^{2}\theta = 1 + \tan^{2}\theta$

$$\therefore y = x\tan\theta - \frac{gx^{2}}{2u^{2}}\left(1 + \tan^{2}\theta\right)$$

4.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 35

Question 1

A shot-putter puts a shot from a point A at a height of 2 metres above horizontal ground. The shot is projected at an angle of elevation of 45° with a speed of 14 m s^{-1} . By using the flight path equation for a particle moving freely under gravity find, to 3 significant figures, the horizontal distance of the shot from A when the shot hits the ground.

Question 2

A boy throws a stone from a point *P* at the end of a pier.

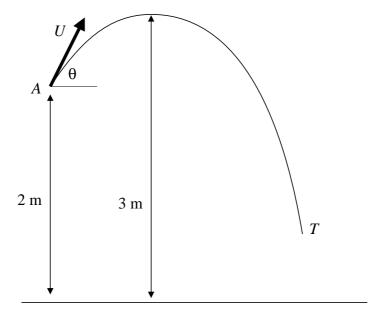
The point P is 15 metres above sea level.

The stone is projected with a speed of 8 m s^{-1} at an angle of elevation of 40°

By using the flight path equation for a particle moving freely under gravity find, to 3 significant figures, the horizontal distance of the stone from P when the stone hits a seagull flying 2 metres above sea level.

Question 3

A projectile is fired with velocity 40 m s^{-1} at an angle of elevation of 30° from a point A on horizontal ground. The projectile moves freely under gravity until it reaches the ground at the point B.


(i) Find the distance between A and B

[5 marks]

(ii) What is the speed of the projectile at the first instant when it is 15 metres above the ground?

Question 4

A-Level Examination question from June 2018, Q10

A boy throws a ball at a target. At the instant when the ball leaves the boy's hand at the point A, the ball is 2 metres above horizontal ground and is moving with speed U at an angle θ above the horizontal.

In the subsequent motion, the highest point reached by the ball is 3 metres above the ground. The target is modelled as being the point T, as shown. The ball is modelled as a particle moving freely under gravity.

Using the model,

(a) show that,
$$U^2 = \frac{2g}{\sin^2 \theta}$$

The point T is at a horizontal distance of 20 meters from A and is at a height of 0.75 metres above the ground. The ball reaches T without hitting the ground.

(**b**) Find the size of the angle θ

(c)	State one limitation of the model that could affect your answer to part (b)	
(d)	Find the time taken for the ball to travel from A to T	[1 mark]
		[3 marks]