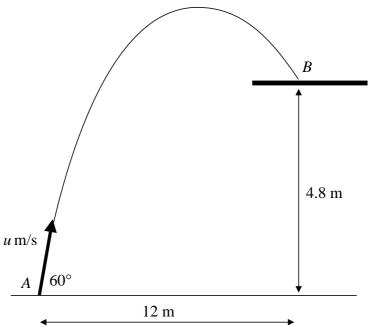
A-Level Applied Mathematics : Mechanics : Year 2

Projectiles (Kinematics III)

_		_			
7	1	R	ωvi	ci	Λn


Any solution based entirely on graphical

	or numerical methods is not acceptable Marks Available : 50	
Question A partice (i)	on 1 sele is projected with velocity $(13\mathbf{i} + 19\mathbf{j})$ m s ⁻¹ over level ground. What is the speed of the projection?	
(ii)	With what angle of elevation is the particle projected ?	[2 marks]
(iii)	What is the greatest height reached by the particle ?	[2 marks]
(iv)	What is the horizontal range of the particle ?	[4 marks]

[4 marks]

A particle is projected from a point O with speed 43 m s⁻¹ at an angle of elevation of 21°. The particle moves freely under gravity.

Find the length of time for which the particle is 12 metres or more above O.

A ball is thrown at an angle of elevation of 60° with unknown speed, u, m s⁻¹ from A. It lands on a flat roof at B which is 4.8 metres above the point of projection. The horizontal distance travelled by the ball between A and B is 12 metres. With what speed, u, was the ball projected?

A vertical mast is 50 metres high. Two balls, P and Q, are projected simultaneously. Ball P is projected horizontally from the top of the mast with speed 16 m s⁻¹. Ball Q is projected from the bottom of the mast with speed 34 m s⁻¹ at an angle θ above the horizontal. The balls move freely under gravity in the same vertical plane and collide in mid-air.

(a) By considering the horizontal motion of each ball prove that,

$$\cos\theta = \frac{8}{17}$$

[4 marks]

(**b**) Find the time which elapses between the instant when the balls are projected and the instant when they collide.

A projectile is launched from a point on a horizontal plane with initial speed u m s⁻¹ at an angle of elevation θ .

The particle moves freely under gravity until it strikes the plane.

The range of the projectile is R metres.

The acceleration due to gravity is g.

(a) Show that the time of flight of the particle, T, is

$$T = \frac{2u \sin \theta}{g} \text{ seconds}$$

[4 marks]

(**b**) Show that,

$$R = \frac{u^2 \sin 2\theta}{g}$$

(c)	Deduce that.	for a fixed u	, the greatest	possible range	e is when $\theta = 45^{\circ}$
()	Deduce mai,	ioi a iinca u	, the Sieutest	possible range	715 WHOH 0 - 15

[2 marks]

(**d**) Given that

$$R = \frac{2 u^2}{5g}$$

find the two possible values of the angle of elevation at which the projection could have been launched.

[4 marks]