Twenty-One Today NUMBER 3

Twenty-One short, sharp questions on all aspects of the Year 1 course You may use a calculator

Question 1

$$y = 4\sqrt{x}$$

Find the coordinates of the only point on this curve with a gradient of 8

Question 2

$$g(x) = x^3 - 7x^2 - x + 23$$

Find the remainder when g(x) is divided by (x + 2)

Question 3

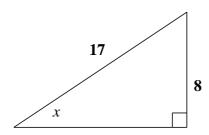
Give the exact solution to the equation

$$ln(11x - 5) = 3$$

The distance between the points (-2, 10) and (x, 6) is $\sqrt{65}$ Find the two possible values of x

Question 5

(i) Work out the value of the discriminant of


$$f(x) = x^2 + x + 2$$

(ii) What does your part (i) answer tell you about the number of roots of f(x)?

Question 6

If $\sin \theta = \frac{8}{17}$ state the exact value of $\cos \theta$ and the exact value of $\tan \theta$

HINT:

Question 7

Simplify;

Differentiate,
$$f(x) = \frac{x^3 + 9x}{3x^2}$$

HINT: Use the 'wedge' technique

Question 9

Integrate,
$$f(x) = \frac{x^4 + 5x^2}{x}$$

Question 10

Solve over the interval $0 \le \theta \le 360^{\circ}$

$$2\cos(\theta) = \sqrt{3}$$

Given that the point A has position vector $6\mathbf{i} - 3\mathbf{j}$ and the point B has position vector $8\mathbf{i} + 5\mathbf{j}$ find the vector, \overrightarrow{AB}

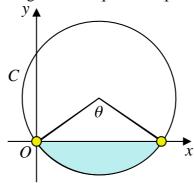
Question 12

Find the equation of the normal to the curve with equation $y = 11 - 4\sqrt{x}$ at the point where x = 4

Question 13

Expand the brackets, $y = (3 - 2x)^3$

Solve the equation, $log_3 x = -\frac{1}{2}$ leaving your answer as an exact value.


Question 15

Solve the equation, $log_7(y + 3) + log_7(2y + 1) = 1$, $y \in \mathbb{R}$, $y > -\frac{1}{2}$

Question 16

Solve the equation, $9^x - 3^{x+1} - 18 = 0$

A sketch of a circle, C, along with its equation is presented below;

$$(x-3)^2 + (y-4)^2 = 5^2$$

Find the coordinates of the two points where C crosses the x-axis.

Question 18

Considering further the circle, C, presented in Question 17, find, in degrees, the size of the angle marked θ .

Question 19

Find the set of values of x for which

$$12 + 4x > x^2$$

Evaluate,
$$f(x) = \int_1^2 \frac{24}{x^3} dx$$

Question 21

Solve, for $0 \le \theta \le 360^{\circ}$, the equation, $2\cos^2\theta + \sin\theta - 1 = 0$