

A Level Further Mathematics

~ Further Statistics 1 ~

THE POISSON DISTRIBUTION

The Normal distribution under certain conditions
modelled the Binomial distribution.
Can it also model the Poisson distribution ?

The Poisson Distribution

Lesson 1

The Poisson Distribution : Further Statistics 1

1.1 Introducing The Poisson Distribution

Named after the French mathematician, Siméon Denis Poisson (1781-1840), the Poisson distribution is a discrete probability distribution.

What other discrete probability distribution has this course previously featured ?

The Poisson distribution expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant average rate and independently of the time since the last event.

If $X \sim Po(\lambda)$, then the Poisson distribution is given by

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!} \quad x = 0, 1, 2, 3, \dots$$

λ is the rate per a specified, fixed interval

1.2 Investigating The Poisson Distribution

To get a feel for the Poisson distribution we can use our statistics calculator to plot a graph of the distribution for a simple example.

Example

The number of telephone calls received at a call centre during a busy weekday morning follows a Poisson distribution with a mean of 3 calls per five minute period.

Use your statistics calculator to plot a graph of the distribution.

For the Casio fx-991EX Classwiz this will require;

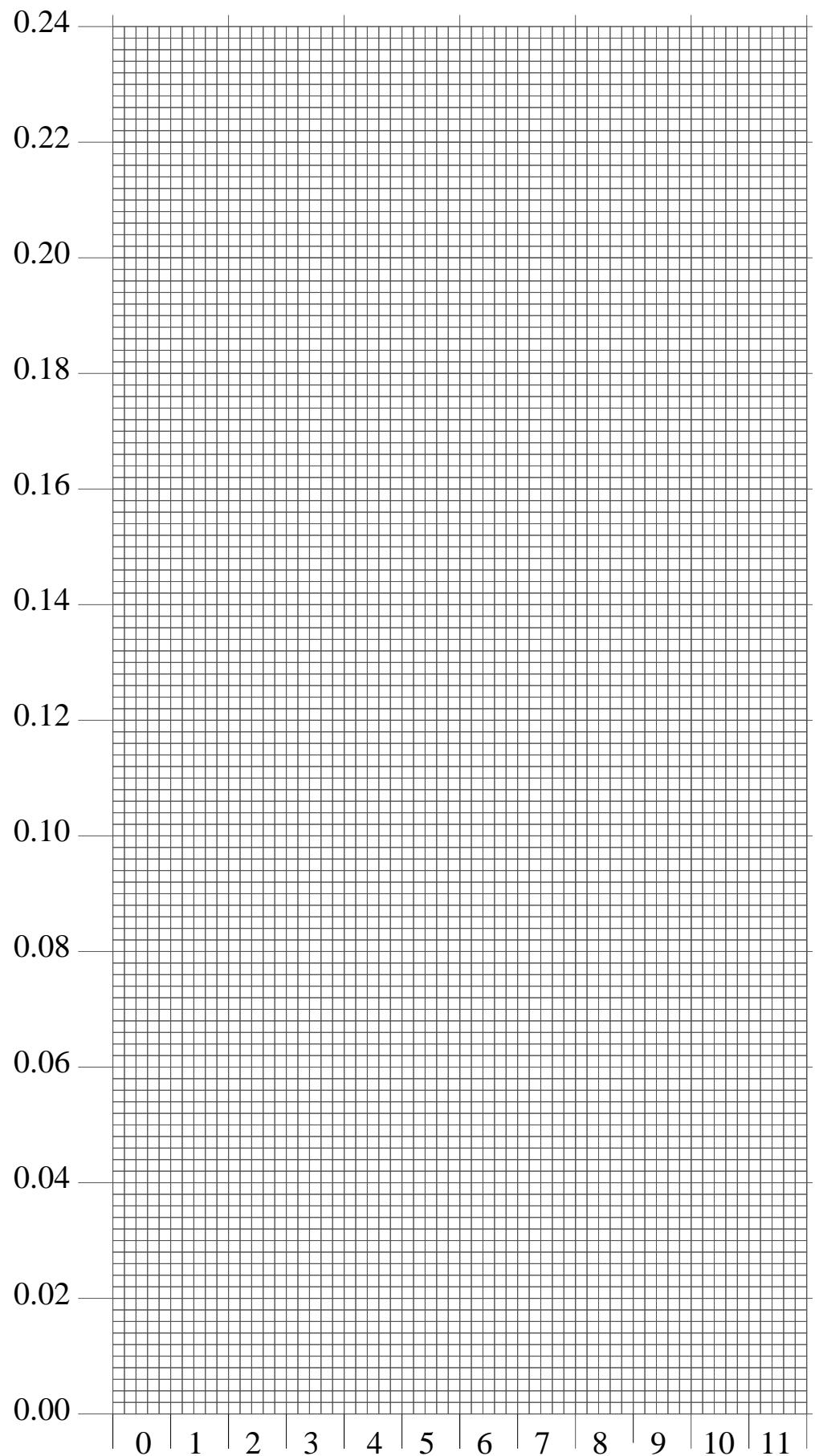
- MENU 7 Distribution
- ↓ Scroll Down
- 2 Poisson PD
- 2 Variables

λ will always be 3 due to the "3 calls per five minute period"

Complete the following table for $x = 0, 1, 2, 3, \dots$

With A Statistics Calculator

Check that for $x = 0$ you get a probability of 0.04978706837


Without A Statistics Calculator

$$\begin{aligned} P(X = 0) &= \frac{e^{-3} \times 3^0}{0!} \\ &= 0.04978706837 \end{aligned}$$

Three Decimal Places

Either way, put the probability rounded to 3 decimal places into the table

$\lambda = 3$	x	$P(X = x)$
	$x = 0$	
	$x = 1$	
	$x = 2$	
	$x = 3$	
	$x = 4$	
	$x = 5$	
	$x = 6$	
	$x = 7$	
	$x = 8$	
	$x = 9$	

1.3 Exercise

Question 1

$$X \sim Po (4.5)$$

Determine $P (X = 7)$ by means of the following calculation;

$$P (X = 7) = \frac{e^{-4.5} \times 4.5^7}{7!}$$

Question 2

$$X \sim Po (5.0)$$

Show the calculation needed to calculate $P (X = 4)$ directly from the definition of the Poisson distribution, which is;

If $X \sim Po (\lambda)$, then the Poisson distribution is given by

$$P (X = x) = \frac{e^{-\lambda} \lambda^x}{x!} \quad x = 0, 1, 2, 3, \dots$$

λ is the rate per a specified, fixed interval

Question 3

$$X \sim Po (2.5)$$

Use the Poisson PD facility on your calculator to determine $P (X = 1)$

Question 4

$$X \sim Po(2.5)$$

Use the Poisson CD facility on your calculator to determine each of the following;

^

(i) $P(X \leq 5)$

(ii) $P(X > 2)$

(iii) $P(3 \leq X \leq 6)$

Question 5

$$X \sim Po(4.5)$$

Use the printed tables “Poisson Cumulative Distribution Function” to determine each of the following;

(i) $P(X = 2)$

(ii) $P(X \leq 1)$

(iii) $P(X \geq 4)$

(iv) $P(2 \leq X \leq 6)$

Question 6

$$X \sim Po (1.6)$$

Use either your statistics calculator or the printed tables “Poisson Cumulative Distribution Function” to determine each of the following;

(i) $P (X = 0)$

(ii) $P (X > 1)$

(iii) $P (X \leq 2)$

(iv) $P (1 < X \leq 3)$

Question 7

$$X \sim Po (8.0)$$

Use either your statistics calculator or the printed tables “Poisson Cumulative Distribution Function” to determine the values of a, b, c and d ;

(i) $P (X \leq a) = 0.3134$

(ii) $P (X \leq b) = 0.7166$

(iii) $P (X < c) = 0.0996$

(iv) $P (X > d) = 0.8088$