A-Level Pure Mathematics: Year 2

Differentiation IV

11.1 Revision

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 50

Question 1

Differentiate each of the following, simplifying answers as appropriate;

(i)
$$y = \frac{2x^5}{15}$$

[2 marks]

(ii)
$$y = ln(2x^3 + 7)$$

[2 marks]

(iii)
$$y = \frac{5}{4x^2 - 3}$$

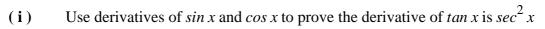
[2 marks]

$$(iv) y = e^{\sqrt{x}}$$

[2 marks]

The product rule states that (uv)' = uv' + u'v

Use the rule to differentiate $y = 7x^2 \cos x$

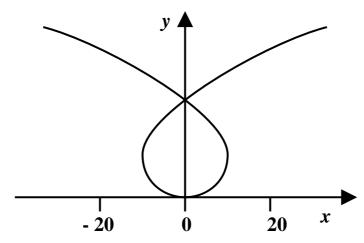

[3 marks]

Question 3

The quotient rule states that $\left(\frac{u}{v}\right)' = \frac{v u' - v' u}{v^2}$

Use the rule to differentiate the following, simplifying your answer;

$$y = \frac{\ln(4x)}{x^2}$$


[4 marks]

(ii) Hence, or otherwise, use the chain rule to differentiate;

$$y = tan^2 x$$

The graph is of the parametric equations;

$$x = 12t - t^3 \qquad \text{and} \qquad \qquad y = 3t^2$$

- (i) Find, in terms of t,
 - $(\mathbf{a}) \frac{dx}{dt}$
- $(\mathbf{b}) \frac{dy}{dt}$
- $(\mathbf{c}) \frac{dy}{dx}$

[2, 2, 2 marks]

(ii) Write down the coordinates of the point on the curve that corresponds to the parameter *t* having the value 1

[1 mark]

(iii) What is the gradient of the curve at your part (ii) point?

[1 mark]

(iv) By making use of your part (ii) and (iii) answers, determine the equation of the tangent to the curve from the point at which t = 1

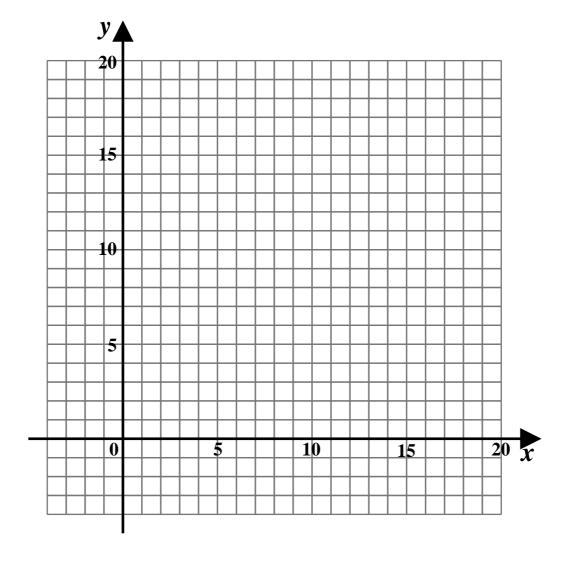
A curve has equation;

$$x^2 + 6xy - y^2 = 90$$

Find an expression for the gradient by means of implicit differentiation.

Write your answer in the form $\frac{dy}{dx} = f(x, y)$

The parametric equations of a curve are;


$$x = t^2 + t, \qquad y = t^2 - t$$

 $x = t^2 + t$, $y = t^2 - t$ Complete the following table by way of working out some points on the (i) graph of this curve.

t	-4	-3	-2	- 1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	2	3	4
х											
у											

[3 marks]

(ii) On the graph paper provided below plot the curve

(iii)	Find, in terms of t , an expression for the derivative of this curve.
	[4 marks]
(iv)	Find, in terms of x and y an expression for the derivative of this curve.
	[4 marks]
This	document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School