A-Level Pure Mathematics: Year 2

Differentiation IV

13.1 Differentiation: Later Date Revision

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 40

Question 1

Without looking up the formulae booklet, differentiate each of the following with respect to x. If you can remember a formulae book formula you can use it!

$$(\mathbf{i}) \qquad y = e^{5x}$$

(ii)
$$y = 4 \sin 6x$$

(iii)
$$y = \cos^2 3x$$

(iv)
$$y = tan x$$

$$(\mathbf{v}) \qquad y = \frac{1}{\cos x}$$

(vi)
$$y = ln(5x^3)$$

(**vii**)
$$y = (ln(5x))^3$$

Question 2

Use the product rule to find the derivative with respect to x of $y = 3x e^{5x}$ giving the answer in the form $\frac{dy}{dx} = A e^{5x} (Bx + C)$ where A, B and C are integers to be found.

[3 marks]

Question 3

Use the quotient rule to find the derivative with respect to x of $y = \frac{\sin 3x}{2x^2}$ and simplify your answer.

[4 marks]

Question 4

Use the chain rule to find the derivative with respect to x of $y = (1 + cos^2 3x)^5$ Write your answer in the form $\frac{dy}{dx} = A(1 + cos^2 3x)^B \sin Cx$ where A, B, and C are integers to be found.

Question 5

A curve is described parametrically by the equations

$$x = t - \cos^2 t y = \sin^2 t$$

$$x = t - \cos^2 t$$
(i) Show that, $\frac{dy}{dx} = \frac{\sin 2t}{1 + \sin 2t}$

[4 marks]

(ii) Show that when
$$t = \frac{\pi}{6}$$
, $\frac{dy}{dx} = m\sqrt{3} + n$

for some integer values of m and n that you should determine.

Question 6

Find the tangent to the curve $y = \sin x$ when $x = \frac{\pi}{3}$

Give your answer in the form y = mx + c and give the exact value for c.

[4 marks]

Question 7

Differentiate implicitly to find $\frac{dy}{dx}$ for the curve $4x^3 + 5y^4 + 7xy = 0$

[4 marks]