
A-Level Pure Mathematics: Year 2

Differentiation IV

8.1 Product Rule Implicitly

The graph is of the equation

$$4x^2y^3 = 4 + x^2 - y^2$$

The equation is a tangle of x and y, each varying and depending on the other. To find the gradient of this curve will require implicit differentiation but the term on the left hand side is a product.

Full marks for thinking "No problem, I can use the product rule"!

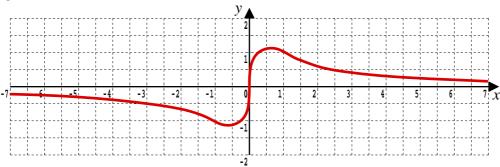
The Product Rule

If
$$f = uv$$
 then $f' = uv' + u'v$

8.2 Example

Obtain an equation of the form $\frac{dy}{dx} = f(x, y)$ for the curve $4x^2y^3 = 4 + x^2 - y^2$

Teaching Video: http://www.NumberWonder.co.uk/v9081/8.mp4



8.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 70

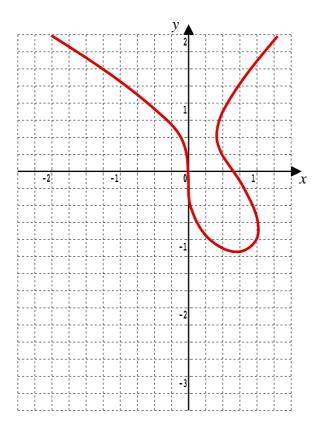
Question 1

(i) Obtain an equation of the form $\frac{dy}{dx} = f(x, y)$ for the curve, $3x^2y = 4x - y^3$

[6 marks]

(ii) Verify that the point Q(1, 1) is on the curve.

[2 marks]


(iii) Show that the gradient at the point Q(1, 1) is $-\frac{1}{3}$

[2 marks]

(iv) Determine the equation of the tangent to the curve at the point Q Give your answer in the form ax + by + c = 0 where a, b and c are integer constants.

The graph is of the equation

$$2xy = y^3 + 2x - 3x^2$$

(i) Obtain an equation of the form $\frac{dy}{dx} = f(x, y)$ for the curve,

$$2xy = y^3 + 2x - 3x^2$$

(ii)	From scrutiny of the graph it looks as if $R(-2, 2)$ is a point with integer coordinates that is on the graph. Verify that $R(-2, 2)$ is indeed on the curve.	
(iii)	From looking at the graph, find another point with integer coordin other than $(0, 0)$ that is on the curve. Use mathematics to verify that your point is indeed on the curve.	[2 marks] ates
(iv)	Find the gradient at your part (iii) point.	[3 marks]
(v)	Determine the equation of the tangent to the curve at your part (iii) point.	[2 marks]
(vi)	Draw your tangent onto the graph, paying particular attention to where it crosses the <i>y</i> -axis.	[2 marks]
		[3 marks]

A-Level Examination Question from January 2012, Paper C4, Q1 (Edexcel) The curve C has the equation

$$2x + 3y^2 + 3x^2y = 4x^2$$

The point P on the curve has coordinates (-1, 1)

(a) Find the gradient of the curve at P

[**5** marks]

(**b**) Hence find the equation of the normal to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

[3 marks]

A-Level Examination question from January 2006, Paper C4, Q1 (Edexcel) The curve *C* is described by the equation

$$3x^2 + 4y^2 - 2x + 6xy - 5 = 0$$

Find an equation of the tangent to C at the point (1, -2), giving your answer in the form ax + by + c = 0, where a, b and c are integers

A-Level Examination Question from June 2005, Paper C4, Q2 (Edexcel) A curve C has equation

$$x^2 + 2xy - 3y^2 + 16 = 0$$

Find the coordinates of the points on the curve where $\frac{dy}{dx} = 0$

A-Level Examination Question from January 2008, Paper C4, Q5 (Edexcel) A curve C is described by the equation

$$x^3 - 4y^2 = 12xy$$

(a) Find the coordinates of the two points on the curve where x = -8

[3 marks]

(**b**) Find the gradient of the curve at each of these points

A-Level Examination Question from June 2008, Paper C4, Q4 (Edexcel) A curve has equation

$$3x^2 - y^2 + xy = 4$$

The points P and Q lie on the curve.

The gradient of the tangent to the curve is $\frac{8}{3}$ at P and at Q

(a) Use implicit differentiation to show that y - 2x = 0 at P and at Q

[6 marks]

(**b**) Find the coordinates of P and Q

[3 marks]