Variable Acceleration (Kinematics IV)

4.1 Differentiation and Variable Acceleration

The A-Level examination may includes a straight forward variable acceleration question involving only differentiation. As an example here is such a question from the June 2023 Mechanics paper.

4.2 Example

A-Level Examination Question from 20th June 2023, Paper 32, Q3 (Edexcel)

At time t seconds, where $t \ge 0$, a particle P has velocity v m s⁻¹ where

$$\mathbf{v} = (t^2 - 3t + 7)\mathbf{i} + (2t^2 - 3)\mathbf{j}$$

Find

(a) the speed of P at time t = 0

[3 marks]

(**b**) the value of t when P is moving parallel to ($\mathbf{i} + \mathbf{j}$)

[2 marks]

(c) the acceleration of P at time t seconds

[2 marks]

(**d**) the value of t when the direction of the acceleration of P is perpendicular to \mathbf{i}

[2 marks]

4.3 Exercise

Question 1

A particle, initially at the origin, has position vector \mathbf{r} where;

$$\mathbf{r} = t^3 \mathbf{i} + 4 t^2 \mathbf{j}$$

- (i) What is the particle's position when t = 3 seconds? Give your answer in the form p i + q j
- (ii) How far is the particle from the origin when t = 3 seconds?
- (iii) Find an expression for the particle's velocity, \mathbf{v} , in terms of t. Give your answer in the form $\mathbf{v} = p(t)\mathbf{i} + q(t)\mathbf{j}$
- (iv) What is the particle's velocity when t = 3 seconds? Give your answer in the form p i + q j
- (v) Give the particle's speed when t = 3 seconds.
- (vi) Find an expression for the particle's acceleration, a, in terms of t. Give your answer in the form a = p(t)i + q(t)j
- (**vii**) What is the particle's acceleration when t = 3 seconds? Give your answer in the form $p \mathbf{i} + q \mathbf{j}$
- (viii) Give the magnitude of the particle's acceleration when t = 3 seconds.
- (ix) Why could the *suvat* equations not be used in answering the above?

A particle's position is given by;

$$r = (3t^2 - 9)\mathbf{i} + (5t^2 + 3t)\mathbf{j}$$

- (i) Find an expression for the particle's velocity, v, in terms of t.
- (ii) Find an expression for the particle's acceleration, a, in terms of t.
- (iii) Could you use the *suvat* equations to investigate this particle's motion? Explain your answer.

Question 3

M2 Examination question from January 2006, part of Q2

A particle P is moving so that its position vector \mathbf{r} metres at time t seconds is given by

$$\mathbf{r} = (t^2 + 4t)\mathbf{i} + (3t - t^3)\mathbf{j}$$

Calculate the speed of P when t = 3

A particle moves so that at time t seconds its position vector, r metres, relative to a fixed origin O is given by;

$$\mathbf{r} = (2t^2 - pt)\mathbf{i} + (t^3 - 3t)\mathbf{j}$$

where p is a constant.

- (i) Find an expression for the velocity, v, in terms of t.
- (ii) Given that the particle comes to instantaneous rest, find the time at which it is at rest and hence the value of p.

Question 5

Relative to a fixed origin O, the position vector of a particle P at time t seconds is r metres, where,

$$r = 16\sqrt{t}\,\mathbf{i} - \frac{1}{t}\mathbf{j}$$

Where is the particle when it is heading north-east?

A particle moves in a horizontal plane. At time t seconds, the position vector of P is r metres relative to a fixed origin O where,

$$\mathbf{r} = (18t - 4t^3)\mathbf{i} + ct^2\mathbf{j}, \quad t \ge 0$$

and where c is a positive constant.

When t = 1.5, the speed of P is 15 m s⁻¹

(i) Determine the value of c

[6 marks]

(ii) Find the acceleration of P when t = 1.5

A particle moves so that its position vector, in metres, relative to a fixed origin O at time t seconds is

$$r = (2t^2 - 3)\mathbf{i} + (7 - 4t)\mathbf{j}$$
 where $t \ge 0$

(a) Show that the particle is north-east of O when $t^2 + 2t - 5 = 0$

[2 marks]

(**b**) Hence determine the distance of the particle from *O* when it is northeast of *O*, giving your answer correct to 3 significant figures.

A second particle moves with constant acceleration $(3a\mathbf{i} - 2a\mathbf{j})$ m s ⁻¹ . When $t = 0$ the velocity of the particle is $(5\mathbf{i} + 6\mathbf{j})$ m s ⁻¹ and its position vector relative to O is $5\mathbf{j}$ m. When $t = 2$ seconds the particle is travelling with velocity $(b\mathbf{i} + 2b\mathbf{j})$ m s ⁻¹ . (c) Find the speed and direction of the particle when $t = 2$
[6 marks]
(d) Find the distance between the two particles at this time.

[4 marks]