
Variable Acceleration (Kinematics IV)

6.1 Examination Questions on Variable Acceleration

There will be a variable acceleration question in the examination!

When integrating do not forget, for a one dimensional problem, the unknown constant of the integration, c.

In two dimensional problems you need two unknown constants, c_x and c_y

6.2 Example

At time t seconds (where $t \ge 0$) the particle P is moving in a plane with acceleration \mathbf{a} m s⁻¹, where $\mathbf{a} = (8t^3 - 6t)\mathbf{i} + (8t - 3)\mathbf{j}$

When t = 2, the velocity of P is $(16\mathbf{i} + 3\mathbf{j})$ m s⁻¹

Find the velocity of *P* after 3 seconds.

6.3 Exercise

Question 1

A particle *P* is moving in a plane.

At time t seconds, it's velocity v m s⁻¹ is given by,

$$\mathbf{v} = 3t\,\mathbf{i} + \frac{1}{2}\,t^2\,\mathbf{j} \qquad t \ge 0$$

When t = 0, the position vector of P with respect to a fixed origin is O is $(2\mathbf{i} - 3\mathbf{j})$ metres. Find the position vector of P at time t = 6 seconds.

[4 marks]

M2 Examination question from June 2006, Q1

A particle *P* moves on the *x*-axis.

At time t seconds, its acceleration is (5-2t) m.s⁻² measured in the direction of x increasing. When t=0, its velocity is 6 m.s⁻¹ measured in the direction of x increasing.

Find the time when *P* is instantaneously at rest in the subsequent motion.

[6 marks]

Question 3

M2 Examination question from June 2003, Q1

A particle *P* moves on the *x*-axis. At time *t* seconds the velocity of *P* is v m.s⁻¹ in the direction of *x* increasing, where $v = 6t - 2t^2$.

When t = 0, P is at the origin O. Find the distance of P from O when P comes to instantaneous rest after leaving O.

M2 Examination question from June 2014, Q2

At time t seconds, where $t \ge 0$, a particle P is moving on a horizontal plane with acceleration,

$$[(3t^2 - 4t)\mathbf{i} + (6t - 5)\mathbf{j}] \text{ m s}^{-2}$$

When t = 3 the velocity of P is $(11\mathbf{i} + 10\mathbf{j})$ m.s⁻¹

Find

(a) the velocity of P at time t seconds

[5 marks]

(**b**) the speed of P when it is moving parallel to the vector **i**

M2 Examination question from June 2013, Q3

A particle P moves on the x-axis. At time t seconds the velocity of P is v m.s⁻¹ in the direction of x increasing, where

$$v = 2t^2 - 14t + 20, \qquad t \ge 0$$

Find

(\mathbf{a}) the times when P is instantaneously at rest

[3 marks]

(**b**) the greatest speed of *P* in the interval $0 \le t \le 4$

[5 marks]

(c) the total distance travelled by P in the interval $0 \le t \le 4$

M2 Examination question from June 2015, Q6

A particle *P* moves on the positive *x*-axis. The velocity of *P* at time *t* seconds is $v \text{ m.s}^{-1}$, where

$$v = 2t^2 - 9t + 4$$

When t = 0, P is 15 m from the origin O.

Find

(a) the values of t when P is instantaneously at rest

[3 marks]

(**b**) the acceleration of *P* when t = 5

[3 marks]

(c) the total distance travelled by *P* in the interval $0 \le t \le 5$

M2 Examination question from June 2004, Q4

At time t seconds, the velocity of a particle P is $((4t - 7)\mathbf{i} - 5\mathbf{j})$ m s⁻¹.

When t = 0, P is at the point with position vector $(3\mathbf{i} + 5\mathbf{j})$ metres relative to a fixed origin, O.

(a) Find an expression for the position vector of P after t seconds, giving your answer in the form $(a \mathbf{i} + b \mathbf{j})$ metres.

[4 marks]

A second particle Q moves with constant velocity $(2\mathbf{i} - 3\mathbf{j})$ m s⁻¹. When t = 0, the position vector of Q is $(-7\mathbf{i})$ metres

(\mathbf{b}) Prove that P and Q collide.

[6 marks]