A-Level Applied Mathematics: Mechanics: Year 2

Variable Acceleration (Kinematics IV)

7.1 Revision

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available : 50	
Assume that ${f i}$ and ${f j}$ are horizontal unit vectors due east	
and due North respectively unless the question states other	vise
Question 1	
A particle, initially located at $(7\mathbf{i} - 4\mathbf{j})$ metres from a fixed origin	O, moves with
initial velocity $(7\mathbf{i} - 8\mathbf{j}) \text{ m s}^{-1}$	
It is accelerating uniformly at $(-3i + 5j)$ m s ⁻²	
(i) What is the particle's speed 4 seconds later?	
	[3 marks]
(ii) On what bearing is the particle moving at that instant?	
	[2 morks]

[2 marks]

(iii) Also, what then is the particle's location?

[3 marks]

A particle moves with constant acceleration $(3\mathbf{i} - 2\mathbf{j})$ m s⁻² At time t = 0, it is at the point A and is moving with velocity $(-4\mathbf{i} + 3\mathbf{j})$ m s⁻¹ At time t = T seconds, the particle is moving in the direction of vector $(-2\mathbf{i} + 3\mathbf{j})$ (\mathbf{i}) Find the value of T

[4 marks]

(ii) Find the velocity of the particle at time T. Give your answer in the form $p\mathbf{i} + q\mathbf{j}$ where p and q are constants with values that are to be found.

As part of a military naval exercise, a submarine performs a crash dive followed by an emergency surface.

It's vertical depth in metres after t seconds is given by,

$$s = \frac{t^3}{576} - \frac{t^2}{6}$$
 for $0 \le t \le 96$

(a) Find the formula for the vertical velocity, v metres per second, t seconds after commencing the exercise.

[2 marks]

(**b**) Find the formula for the vertical acceleration, a metres per second square, t seconds after commencing the exercise.

[2 marks]

(c) Find the greatest depth, in metres, reached by the submarine during the exercise.

[3 marks]

(**d**) Find the vertical velocity with which the submarine re-surfaces. Give this answer in kilometres per hour.

[3 marks]

M2 A-level examination question from June 2002, Q2

With respect to a fixed origin O, the velocity v m s⁻¹ of a particle P at time t seconds is given by

$$\mathbf{v}_P = t^2 \mathbf{i} + (5 - 4t) \mathbf{j}$$

(a) Find the acceleration of P at time t seconds, giving your answer as a vector.

[2 marks]

(**b**) Find the value of t when P is moving parallel to the vector \mathbf{i}

[2 marks]

When t = 0, P is at the point with position vector -3i metres.

(c) Find, to 3 significant figures, the distance *OP* when t = 3

Question	5
Question	\sim

At time t seconds, the velocity of a particle P is $((4t - 3)\mathbf{i} + 4\mathbf{j})$ m s⁻¹. When t = 0, P has position vector $(\mathbf{i} + 2\mathbf{j})$ metres relative to a fixed origin, O.

(a) Find an expression for the position vector of P after t seconds, giving your answer in the form $(a\mathbf{i} + b\mathbf{j})$ metres.

[3 marks]

A second particle Q moves with constant velocity $(5\mathbf{i} + k\mathbf{j})$ m s⁻¹. When t = 0, the position vector of Q is $(11\mathbf{i} + 5\mathbf{j})$ metres

- (**b**) Given that the particles *P* and *Q* collide, find:
 - (i) the value of k

[3 marks]

(ii) the position vector of the point of collision

[2 marks]

A particle moves with a velocity v m s⁻¹ where t is the time in seconds and,

$$\mathbf{v} = \begin{pmatrix} 16t - 9t^2 \\ 7 - t^3 \end{pmatrix}$$

When t = 0 the position of the particle relative to a fixed origin is $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ metres.

(i) Find the position of the particle after 3 seconds.

[3 marks]

(ii) Find the magnitude of the acceleration of the particle when t = 2 seconds.

A particle *P* moves so that its acceleration a m s⁻² at time t seconds, where $t \ge 0$, is given by

$$a = 4t \, \mathbf{i} + \frac{5}{\sqrt{t}} \, \mathbf{j}$$

When t = 0, the velocity of *P* is 10**i** m s⁻¹ Find the speed of *P* when t = 5

[3 marks]