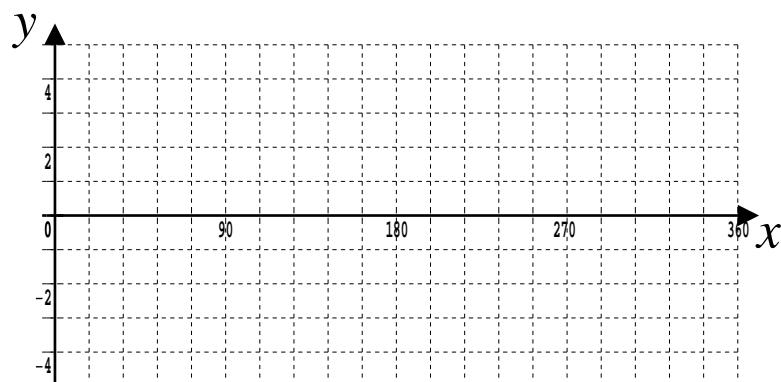


Year 1 Pure Mathematics Examination Revision
Health Check N° 2

I went to the Library to get a medical book on abdominal pain.
Somebody had ripped the appendix out...

*Any solution based entirely on graphical
or numerical methods is not acceptable*


Marks Available : 50

Question 1

Given a curve, $y = f(x)$, if y is replaced with $\frac{y}{3}$ all distances from the x -axis

are tripled and if x is replaced with $2x$ all distances from the y -axis halve.

Use these facts to sketch the graph of $\frac{y}{3} = \sin(2x)$ on the grid below.

[3 marks]

Question 2

(i) Show that $\frac{1 - \tan^2 x}{1 + \tan^2 x} = 2 \cos^2 x - 1$

[6 marks]

(ii) Hence solve $\frac{1 - \tan^2 x}{1 + \tan^2 x} = \frac{1}{8}$ over the interval $0^\circ \leq x \leq 360^\circ$

[5 marks]

Question 3

(i) On the same graph sketch the curve $y = (x - 1)^2(x + 1)^2$ and the straight line $y = 1$, paying particular attention to any points where an axis is touched or crossed.

[5 marks]

(ii) Find all solutions to the equation, $(x - 1)^2(x + 1)^2 = 1$

[4 marks]

(iii) Solve $\left(\frac{1}{\cos x} - 1\right)^2 \left(\frac{1}{\cos x} + 1\right)^2 = 1$, $0 \leq x \leq 360$, $x \neq 90, 270$

[4 marks]

Question 4

To translate any curve by the vector $\begin{pmatrix} a \\ b \end{pmatrix}$

- replace x with $x - a$
- replace y with $y - b$

(i) Given that the equation of a circle centre $(0, 0)$, radius r is $x^2 + y^2 = r^2$

deduce the equation of a circle of radius 13 that has been translated $\begin{pmatrix} 5 \\ 12 \end{pmatrix}$

[3 marks]

(ii) The parabola $y = x^2$ is to be translated $\begin{pmatrix} 4 \\ -7 \end{pmatrix}$

What is the equation of the translated parabola ?

Give your answer in the form $y = ax^2 + bx + c$ where a , b and c are integers the values of which you have determined.

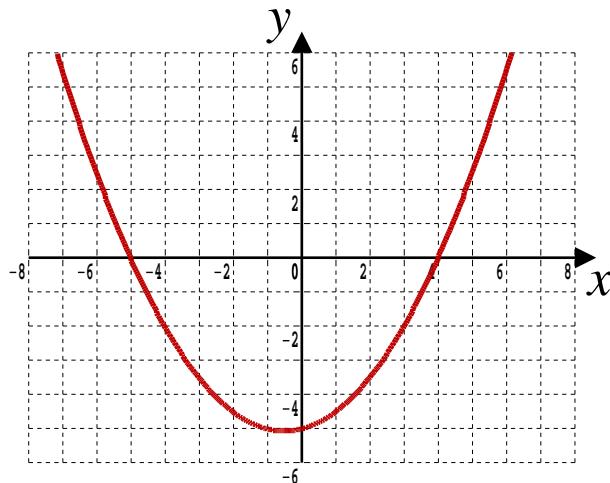
[4 marks]

(iii) The inverse proportion graph, $y = \frac{1}{x}$ is translated so that the asymptotes are at $x = 5$ and $y = 1$.

Find the equation of the transformed graph in the form $y = \frac{ax + b}{cx + d}$ where a, b, c and d are integers, the values of which you have determined.

[5 marks]

Question 5


In $\triangle ABC$, $AB = 16$ cm, $AC = 13$ cm, $\angle ABC = 50^\circ$ and $\angle BCA = x^\circ$

Find the two possible values for x , giving your answers to one decimal place.

[4 marks]

Question 6

The parabola shown below crosses the x -axis at $(-5, 0)$ and $(4, 0)$ and it crosses the y -axis at $(0, -5)$

(i) Determine the equation of the parabola in the form $y = f(x)$

[4 marks]

(ii) Solve the related equation $f(x - 3) = 0$

[3 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School

It may be freely duplicated and distributed, unaltered, for non-profit educational use

In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**"

© 2025 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from MHHShrewsbury@Gmail.com