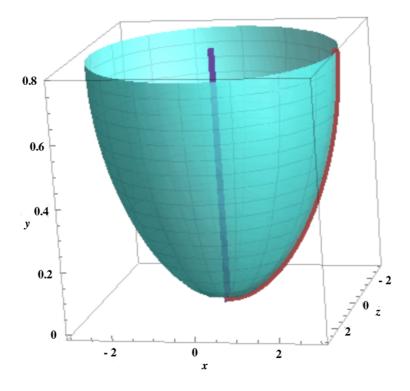
3.1 Spin About Y

The volume of revolution formed when x = f(y) is rotated through 2π radians about the y-axis between y = a and y = b is given by


$$Volume = \pi \int_{a}^{b} x^{2} dy$$

3.2.1 The Question

Find the exact volume swept out by the part of the following profile curve between the bounding lines given when it is rotated by $2\pi^c$ about the y-axis.

$$x = 3\sqrt{\sin(2y)}, \qquad y = 0, \qquad y = \frac{\pi}{4}$$

Give your answer as a multiple of π

You may like to try answering this question yourself before taking a look at the answer over the page.

NOTE: RADIANS must be used whenever trigonometry and calculus mix.

3.2.2 The Answer

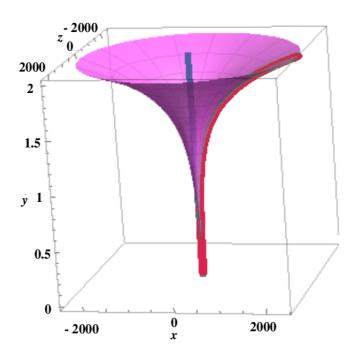
Volume =
$$\pi \int x^2 dy$$

= $\pi \int_0^{\frac{\pi}{4}} 9 \sin(2y) dy$
= $\frac{9\pi}{2} \int_0^{\frac{\pi}{4}} 2 \sin(2y) dy$ Setting up a "Chain Rule Backwards"
= $\frac{9\pi}{2} \left[-\cos(2y) \right]_0^{\frac{\pi}{4}}$
= $\frac{9\pi}{2} \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0) \right]$
= $\frac{9\pi}{2} \left[-0 + 1 \right]$
= $\frac{9\pi}{2}$

[5 marks]

3.3 A Handy Table is Trigonometric Derivatives and Integrals

f(x)	f'(x)	Given?
sin x	cos x	
cos x	- sin x	
tan x	$sec^2 x$	*
sec x	sec x tan x	*
csc x	$-\csc x \cot x$	*
cot x	$-csc^2x$	*
ln x	$\frac{1}{x}$	
$ln \mid sec \mid x \mid$	tan x	*
ln sin x	cot x	*
$ln \mid sec x + tan x \mid$	sec x	*
$ln \left tan \left(\frac{1}{2}x + \frac{1}{4}\pi \right) \right $	sec x	*
$-\ln \csc x + \cot x $	csc x	*
$ln \mid tan\left(\frac{1}{2}x\right) \mid$	csc x	*
e^{x}	e^x	

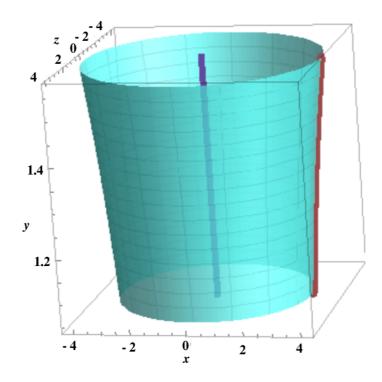

^{*} Formulae marked with an asterisk are provided in the examination in a book of formulae.

3.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 40

Question 1



(i) Show that the volume swept out by the curve $x = 6e^{3y}$ between y = 0 and y = 2 when it is rotated by $2\pi^c$ about the y-axis is exactly $6\pi (e^{12} - 1)$

[**5** marks]

(ii) Give this volume as a decimal correct to three decimal places.

[1 mark]

(i) Show that the volume swept out by the curve $x = \frac{3}{\cos(0.5y)}$ between $y = \frac{\pi}{3}$ and $y = \frac{\pi}{2}$ when it is rotated by $2\pi^c$ about the y-axis is exactly $6\pi(3-\sqrt{3})$

[5 marks]

(ii) Give this volume as a decimal correct to three decimal places.

[1 mark]

The volume of revolution of a shot glass is 4π cm³ exactly.

The profile curve is $x = \sqrt{y}$ and the rotation is about the *y*-axis.

The lower limit of the profile curve is y = 1 cm.

The upper limit is not known, call it a cm.

Calculate the upper limit, a, of the profile curve.

Clearly showing your method and working.

[5 marks]

Question 4

Find the exact volume swept out by the part of the following profile curve between the bounding lines given when it is rotated by $2\pi^c$ about the y-axis.

$$x = y + \frac{1}{\sqrt{y}}, \qquad x = 1, \qquad x = 4$$

Write your answer in the form π (K+ln 4) where K is a constant, the value of which you should determine.

(\mathbf{i}) Use the product rule to differentiate with respect to y,

$$x = y \ln y$$

[2 marks]

(ii) Hence show that,

$$\int_{1}^{8} (1 + \ln y) dy = 24 \ln 2$$

[3 marks]

(iii) Hence state the volume of the solid formed when the profile curve

$$x = \sqrt{1 + \ln y}$$

is rotated 2π radians about the y-axis between y = 1 and y = 8

[1 marks]

Show that the volume swept out by the curve

$$x = \frac{1}{4} e^{\frac{y}{2}}$$

between y=0 and y=4 $\ln 3$ when it is rotated by $2\pi^c$ about the y-axis is exactly 5π

Find the volume swept out by the part of the following profile curve between the bounding lines given when it is rotated by $2\pi^c$ about the *y*-axis.

$$x = \frac{1}{3} \sqrt{\sin\left(\frac{y}{2}\right)}, \qquad y = 0, \qquad y = \frac{\pi}{6}$$

Give your answer correct to 3 significant figures.

[6 marks]