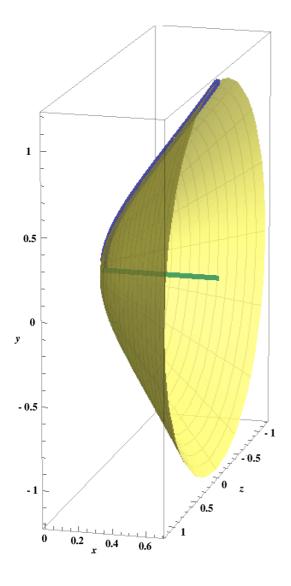

4.1 Revolving Integration By Parts

Find the exact volume swept out by the part of the following profile curve between the bounding lines given when it is rotated by $2\pi^c$ about the y-axis.

$$x = \frac{\sqrt{y}}{\cos y}, \qquad y = 0, \qquad y = \frac{\pi}{4}$$

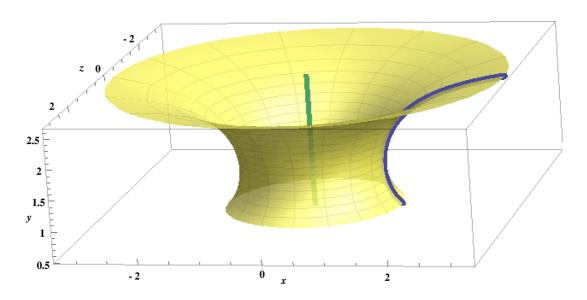
Teaching Video: http://www.NumberWonder.co.uk/v9087/4.mp4

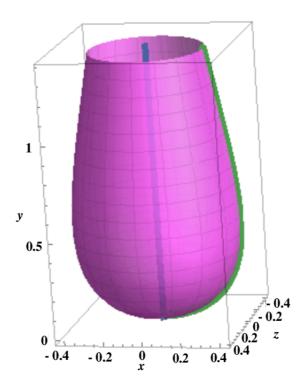


4.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available: 30

Question 1


Show that the volume swept out by the curve $y = \sqrt{x} e^{\frac{x}{2}}$ between x = 0 and $x = \ln 2$ when it is rotated by $2\pi^c$ about the x-axis is exactly, $\pi(2\ln(2) - 1)$


[10 marks]

Question 2

Show that the volume swept out by the curve $x = \frac{\sqrt{y}}{\sin y}$ between $y = \frac{\pi}{6}$ and $y = \frac{5\pi}{6}$ when it is rotated by $2\pi^c$ about the y-axis is exactly, $\pi^2 \sqrt{3}$

Question 3

Show that the volume swept out by the curve $x = \sqrt{y} e^{-y}$ between y = 0 and $y = \ln 4$ when it is rotated by $2\pi^c$ about the y-axis is exactly, $\frac{\pi}{64}$ (15 - 2 $\ln 4$)

[10 marks]