Conic Sections (Simultaneous Equations IV)

4.1 Circle and Ellipse

In appearance, a circle (in red) and an ellipse (in gold) have much in common. They are both smooth and continuous curves that form a graceful closed loop.

No surprise then that their algebraic equations also look similar.

Red circle: $x^2 + y^2 = 34$

Gold ellipse: $x^2 + 3y^2 = 52$

More generally,

The Equation of a Circle

$$x^2 + y^2 = r^2$$

This is a circle with centre (0, 0) and radius r

The Equation of an Ellipse

$$x^2 + a y^2 = w^2$$

This is an ellipse with centre (0,0) and half width, w

In fact, when a = 1 in the equation of an ellipse, it becomes the equation of a circle.

This is because,
$$a = \left(\frac{half\ width}{half\ height}\right)^2$$

and for a circle the half width and the half height are the same; the radius, r.

- The *half width* is the number where the ellipse crosses the positive *x*-axis.
- The *half height* is the number where the ellipse crosses the positive y-axis.

4.2 Where Gold meets Red

Use algebra to solve the simultaneous equations,

Red circle:
$$x^2 + y^2 = 34$$

Gold ellipse:
$$x^2 + 3y^2 = 52$$

Teaching Video: http://www.NumberWonder.co.uk/v9091/4.mp4

4.3 Exercise

Question 1

Use algebra to solve the simultaneous equations,

Red circle: $x^2 + y^2 = 17$

Gold ellipse: $x^2 + 5y^2 = 81$

Question 2

Use algebra to solve the simultaneous equations,

Red circle:
$$x^2 + y^2 = 66$$

Gold ellipse:
$$x^2 + 12y^2 = 88$$

Give your points as exact coordinates, leaving square roots in your answers.

Question 3

Use algebra to solve the simultaneous equations,

Gold ellipse:
$$x^2 + 4y^2 = 52$$

Green hyperbola:
$$y = \frac{1}{y}$$

This list of pairs of positive integers that have a product of 576 may be of use!

- 1×576
- 2×288
- 3×192
- 4×144
- 6 × 96
- 8×72
- 9×64
- 12×48
- 16 × 36
- 18×32
- 24×24

Question 4

Use algebra to solve the simultaneous equations,

Gold ellipse:
$$x^2 + 2y^2 = 72$$

Purple parabola:
$$y = \frac{x^2}{8} - 6$$

