6.1 Revision

6.2 Useful Information

6.2.1 A Table of Functions and their Derivatives

f(x)	f'(x)	In Formula Book ?
x ⁿ	$n x^{n-1}$	No
e^x	e^x	No
ln x	$\frac{1}{x}$	No
sin x	cos x	No
cos x	$-\sin x$	No
tan x	$sec^2 x$	Yes
csc x	$-\csc x \cot x$	Yes
sec x	sec x tan x	Yes
cot x	$-csc^2x$	Yes
arcsin x	$\frac{1}{\sqrt{1-x^2}}$	Yes
arccos x	$-\frac{1}{\sqrt{1-x^2}}$	Yes
arctan x	$\frac{1}{1+x^2}$	Yes
arccot x	$-\frac{1}{1+x^2}$	No
arcsec x	$\frac{1}{x\sqrt{x^2-1}}$	No
arccsc x	$-\frac{1}{x\sqrt{x^2-1}}$	No

6.2.2 The Trigonometric Addition Formula

The Addition Formulae

$$sin (A \pm B) = sin A cos B \pm cos A sin B$$
 $cos (A \pm B) = cos A cos B \mp sin A sin B$
 $tan (A \pm B) = \frac{tan A \pm tan B}{1 \mp tan A tan B}$

6.2.3 Standard Maclaurin Series

Quotable Maclaurin Series Expansions

•
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^r}{r!} + \dots$$
 valid for all x

•
$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{r+1} \frac{x^r}{r} + \dots - 1 < x \le 1$$

•
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots$$
 valid for all x

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^r \frac{x^{2r}}{(2r)!} + \dots$$
 valid for all x

•
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^r \frac{x^{2r+1}}{2r+1} + \dots - 1 < x \le 1$$

6.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 38

Question 1

Use the addition formula for sin(A + B) and the series expansions of sin x and cos x to show that,

$$\sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\left(1 + x - \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} + \dots\right)$$

Given that $f(x) = \ln \sec x$

(a) show that $f'(x) = \tan x$

[2 marks]

(**b**) find the values of f'(0), f''(0), f'''(0) and f''''(0)

[2 marks]

(c) express $ln\ sec\ x$ as a series in ascending powers of x up to and and including the term in x^4

[2 marks]

(**d**) show that using the first two non-zero terms of the Maclaurin series for $\ln \sec x$, with $x = \frac{\pi}{4}$, gives a value for $\ln 2$ of $\frac{\pi^2}{16} \left(1 + \frac{\pi^2}{96} \right)$

Further A-Level Examination Question from June 2007, FP2, Q1(c) (MEI) edited $f(x) = \arccos(2x)$

(i) Write down f'(x)

[2 marks]

(ii) A special case of the binomial theorem is that,

$$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{1\cdot 3}{2\cdot 4}x^2 - \frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}x^3 + \dots - 1 < x \le 1$$

Show how to use this to expand f'(x), and hence find the Maclaurin series for f(x) in ascending powers of x up to and including the term in x^5

Obtain the first three terms of the Maclaurin series for f(x) = arccot(1 + x)

Further A-Level Examination Question from January 2009, FP2, Q1(a)(ii) (MEI) The Maclaurin expansion of $sec\ x$ begins

$$1 + ax^2 + bx^4$$

where a and b are constants.

Explain why, for sufficiently small x,

$$\left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4\right)\left(1 + ax^2 + bx^4\right) \approx 1$$

and hence find the values of a and b

Given that $f(x) = ln(x + \sqrt{1 + x^2})$

(i) Show that $\sqrt{1 + x^2} f'(x) = 1$

[2 marks]

(ii) Show that $(1 + x^2) f''(x) + x f'(x) = 0$

[2 marks]

(iii) Show that
$$(1 + x^2) f'''(x) + 3x f''(x) + f'(x) = 0$$

(iv)	State the values of $f(0)$, $f'(0)$, $f''(0)$ and $f'''(0)$	
	[2 marks	;]
(v)	Give the Maclaurin series for $f(x)$ in ascending powers of x up to and	
	including the term in x^3	
	[2 marks	;]
This	document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School	