Complex Numbers II

5.1 Trigonometric Identities, Type 1

Thanks to Euler's Relation and de Moivre's theorem, the world of complex numbers is a natural setting in which to generate trigonometric identities.

One fruitful approach is to consider an expression of the form $(\cos \theta + i \sin \theta)^n$ for some integer value of n. By then expanding the brackets in two different ways, and setting the resulting expressions equal to each other, many useful trigonometric identities are obtained.

5.2 Example

By expanding the brackets of $(\cos \theta + i \sin \theta)^2$ in two different ways, derive two well known trigonometric identities.

Teaching Video: http://NumberWonder.co.uk/v9099/5.mp4

5.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 50

Question 1

By expanding the brackets of $(\cos\theta + i\sin\theta)^3$ in two different ways, derive the following two well known trigonometric identities, frequently obtained "the long way" in the single A-Level examination papers,

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$
 and $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$

By means of the substitution $x = \cos \theta$, and making use of the trigonometric identity $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$, to find all three solutions to the equation,

$$8x^3 - 6x - 1 = 0$$

Give your answers to 3 decimal places

[5 marks]

Question 3

This question is about finding all the solution to the equation

$$\cos 5\theta + 5\cos 3\theta = 0$$
 $0 \le \theta < \pi$

You are given that $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$

and also that $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$

Give your answers to 3 decimal places

Further A-Level Examination Question from June 2014, FP2(R), Q7 (Edexcel)

(i) Use de Moivre's theorem to show that,

$$\sin 5\theta = 16\sin^5 \theta - 20\sin^3 \theta + 5\sin \theta$$

(**b**) Hence find the five distinct solutions of the equation

$$16x^5 - 20x^3 + 5x + \frac{1}{2} = 0$$

giving your answers to 3 decimal places where necessary.

[**5** marks]

(c) Use the identity given in (a) to find

$$\int_0^{\frac{\pi}{4}} \left(4 \sin^5 \theta - 5 \sin^3 \theta \right) d\theta$$

expressing your answer in the form $a\sqrt{2} + b$ where a and b are rational numbers.

(i) Use de Moivre's theorem to show that

$$\sin 4\theta = 4\cos^3\theta \sin\theta - 4\cos\theta \sin^3\theta$$

[4 marks]

(ii) Hence, or otherwise, show that,

$$\tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan^4\theta}$$

(iii) Use your answer to part (b) to find, to 2 decimal places, the four solutions of the equation,

$$x^4 + 4x^3 - 6x^2 - 4x + 1 = 0$$

Further A-Level Examination Question from June 2018, FP2, Q7(a) (Edexcel) Use de Moivre's theorem to show that

$$\cos 7\theta = 64\cos^7 \theta - 112\cos^5 \theta + 56\cos^3 \theta - 7\cos \theta$$

[6 marks]