7.1 Complex Number Polygons

The focus of this lesson is upon solving equations of the form $z^n = w$ where z and w are complex numbers and n is a positive integer.

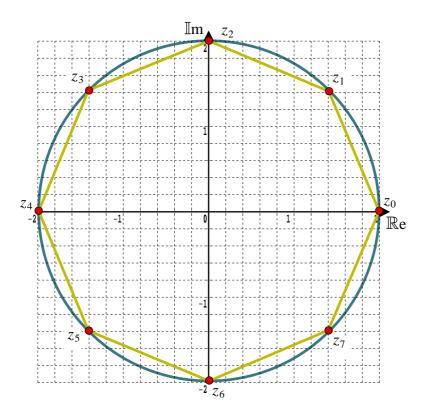
The Fundamental Theorem of Algebra states that over the complex numbers a polynomial of degree n will have n roots. For any given n and w the task is to then find all n roots.

When the equation $z^8 = 256$ is solved over the real numbers, two answers are are obtained, $z = \pm 2$, because they are the only two real numbers that make the equation true.

Over the complex numbers, however, the same equation has these eight roots;

$$z \in \{\pm 2, \pm 2i, \pm (\sqrt{2} + \sqrt{2}i), \pm (\sqrt{2} - \sqrt{2}i)\}$$

On an Argand diagram this collection of roots lie at the vertices of a regular octagon with its centre at the origin.



Thus there is thus a natural relationship between the roots of equations of the form $z^n = w$ and a regular *n*-gon. The radius of the circle that circumscribes the *n*-gon and the angle by which the *n*-gon is rotated about the origin depend upon w.

Complex Roots Theorem

For a positive integer n, $w = r(\cos \theta + i \sin \theta)$ has exactly n distinct n^{th} roots given by

$$z_k = \sqrt[n]{r} \left(\cos \left(\frac{\theta + 2\pi k}{n} \right) + i \sin \left(\frac{\theta + 2\pi k}{n} \right) \right)$$

where k = 0, 1, 2, 3, ..., n - 1

On an Argand diagram the roots lie at the vertices of a regular n-gon with its centre at the origin.

Example

To solve the equation $z^8 = 256$ with the answers in Cartesian form...

Begin by observing that r = 256, $\theta = 0$ and so w = 256 is better expressed in trigonometric form as $w = 256 (\cos 0 + i \sin 0)$

From the Complex Roots Theorem, the roots will be given by,

$$z_k = \sqrt[8]{256} \left(\cos\left(\frac{0+2\pi k}{8}\right) + i\sin\left(\frac{0+2\pi k}{8}\right) \right)$$
$$= 2\left(\cos\left(\frac{\pi k}{4}\right) + i\sin\left(\frac{\pi k}{4}\right) \right) \text{ for } k = 0, 1, 2, ..., n-1$$

For
$$k = 0 : z_0 = 2(\cos 0 + i \sin 0)$$
 = 2

For
$$k = 1$$
: $z_1 = 2\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right) = \sqrt{2} + \sqrt{2}i$

For
$$k = 2$$
: $z_2 = 2\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right) = 2i$

For
$$k = 3$$
: $z_3 = 2\left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right) = -\sqrt{2} + \sqrt{2}i$

For
$$k = 4 : z_4 = 2(\cos(\pi) + i\sin(\pi)) = -2$$

For
$$k = 5$$
: $z_5 = 2\left(\cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right)\right) = -\sqrt{2} - \sqrt{2}i$

For
$$k = 6$$
: $z_6 = 2\left(\cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right)\right) = -2i$

For
$$k = 7$$
: $z_7 = 2\left(\cos\left(\frac{7\pi}{4}\right) + i\sin\left(\frac{7\pi}{4}\right)\right) = \sqrt{2} - \sqrt{2}i$

These are the roots shown on the diagram on the previous page

7.3 A Special Case

Considerable importance is attached to the special case of solving the equation $z^n = w$ when w = 1. The resulting roots are termed the n^{th} roots of unity. Geometrically, on an Argand diagram the roots will be equally spaced around a unit circle, with one root always at 1 + 0i

The *n*th Roots of Unity

The n^{th} roots of unity are the roots of the equation $z^n = 1$

If those roots are denoted as 1, ω , ω^2 , ..., ω^{n-1} then those roots sum to zero

$$1 + \omega + \omega^2 + \dots + \omega^{n-1} = 0$$

Proof #1

The n^{th} roots of unity are the solutions to the equation $z^n - 1 = 0$.

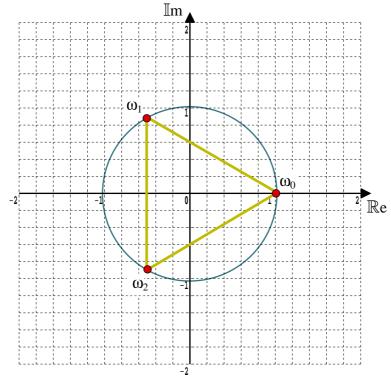
In this equation the coefficient of z^n is 1 and the coefficient of z^{n-1} is zero.

The sum of the roots of a polynomial is given by the coefficient of z^{n-1} \square Proof #2

Geometrically, the n^{th} roots of unity are equally spaced vectors around a unit circle and so their sum is the centre of the circle which is 0 + 0i

Example

The cube roots of unity are 1, $-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$



7.4 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

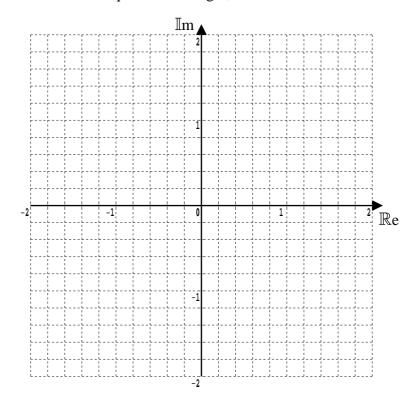
Marks Available: 50

Question 1

(i) Solve the equation $z^3 = \frac{27}{8}i$ presenting the exact answers in Cartesian form.

[6 marks]

(ii) Plot the part (i) answers on an Argand diagram. By considering them the vertices of an equilateral triangle, determine the exact area of the triangle.



[5 marks]

Further A-Level Examination Question from June 2009, FP2, Q2 (Edexcel) Solve the equation

$$z^3 = 4\sqrt{2} - 4\sqrt{2} i$$

giving your answers in the form $r(\cos\theta + i\sin\theta)$, where $-\pi < \theta \leq \pi$

Further A-Level Examination Question from June 2017, FP2, Q3 (Edexcel) Solve the equation,

$$z^3 + 32 + 32i\sqrt{3} = 0$$

giving your answers in the form $re^{i\theta}$ where r>0 and $-\pi<\theta\leqslant\pi$

(i) Find the five roots of the equation $z^5 - 1 = 0$ Give your answers in the form $r(\cos \theta + i \sin \theta)$ where $-\pi < \theta \le \pi$

[6 marks]

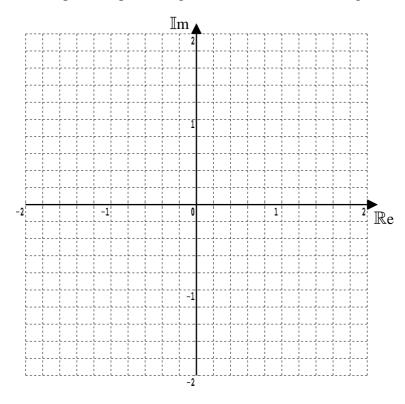
(ii) Hence, or otherwise, show that,

$$\cos\left(\frac{2\pi}{5}\right) + \cos\left(\frac{4\pi}{5}\right) = -\frac{1}{2}$$

(i) Find the three roots of the equation $(z + 1)^3 = -1$ Give your answers in the form x + iy, where $x, y \in \mathbb{R}$

[6 marks]

(ii) Plot the points representing these three roots on an Argand diagram.



[2 marks]

(iii) Given that these three points lie on a circle, state its centre and radius

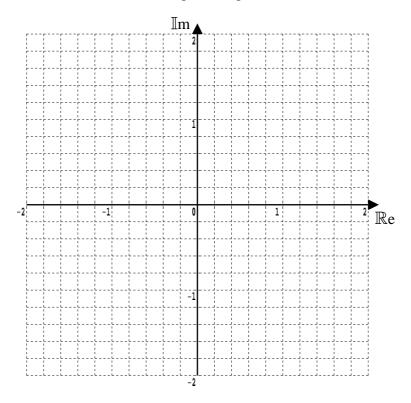
[1 mark]

Further A-Level Examination Question from June 2016, FP2, Q3 (Edexcel)

(a) Find the four roots of the equation $z^4 = 8(\sqrt{3} + i)$ in the form $z = re^{i\theta}$

[5 marks]

(b) Show these roots on an Argand diagram



[2 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**"

© 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk