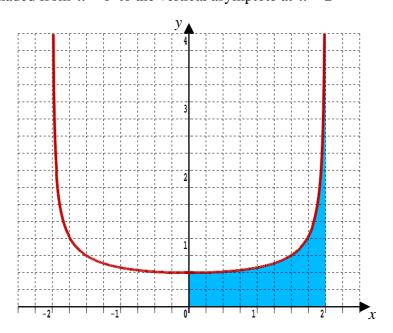
3.1 Substitution

The graph is of the function $f(x) = \frac{1}{\sqrt{4 - x^2}}$ and the task is to find the area shown shaded from x = 0 to the vertical asymptote at x = 2



Teaching video: http://www.NumberWonder.co.uk/v9100/3.mp4

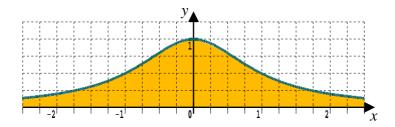
3.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 50

Question 1

The graph is of the function $f(x) = \frac{1}{1+x^2}$ and the task to find $\int_{-\infty}^{\infty} f(x) dx$



(i) The function is even. Explain how this fact can simplify the task.

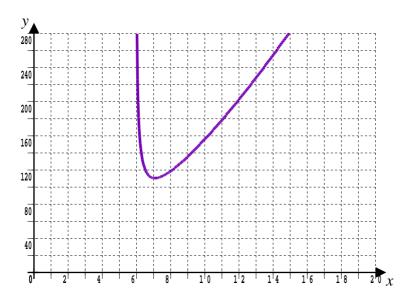
[1 mark]

(ii) Prove that the derivative with respect to θ of $\tan \theta$ is $\sec^2 \theta$

[2 marks]

(iii) Use the substitution $x = \tan \theta$ to show that $\int_{-\infty}^{\infty} f(x) dx = \pi$ A sketch of the graph of $\theta = \arctan x$ may help with changing the limits.

The graph is of $y = \frac{(x-4)(5x+2)}{\sqrt{x-6}}$



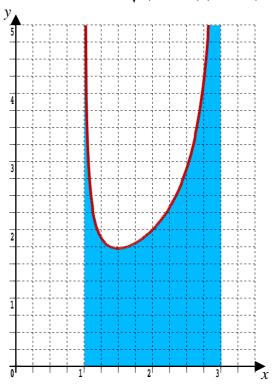
(i) Use the substitution $x = 6 + u^2$ to determine the value of the improper integral $\int_6^7 \frac{(x-4)(5x+2)}{\sqrt{x-6}} dx$

[5 marks]

(ii) From the graph, explain why $\int_{7}^{\infty} \frac{(x-4)(5x+2)}{\sqrt{x-6}} dx$ will be divergent

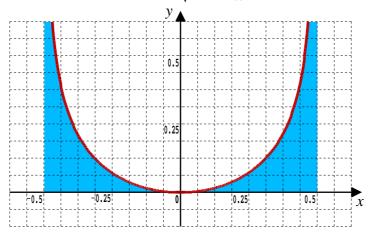
[2 marks]

The graph is of the function $f(x) = \frac{x}{\sqrt{(x-1)(3-x)}}$



Use the substitution $x = \sin \theta + 2$ to determine the area shaded which is between the curve, the x-axis and the vertical asymptotes at x = 1 and x = 3

The graph is of the function $f(x) = \frac{x^2}{\sqrt{1 - 4x^2}}$



Use the substitution $x = \frac{1}{2} \sin \theta$ to determine the area shaded which is between

the curve, the x-axis and the vertical asymptotes at $x = \pm \frac{1}{2}$

Faced with an improper integral of the form,

$$\int_{a}^{b} \frac{1}{\sqrt{(b-x)(x-a)}} dx \quad \text{where } a \text{ and } b \text{ are constants with } a < b$$

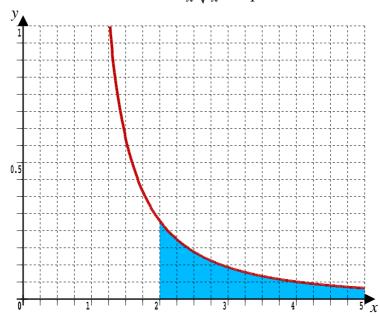
the substitution to use is $x = a \cos^2 \theta + b \sin^2 \theta$

(i) Show that
$$(b-x)(x-a) = (b-a)^2 \cos^2 \theta \sin^2 \theta$$

[3 marks]

(ii) Show that
$$\int_a^b \frac{1}{\sqrt{(b-x)(x-a)}} dx = \pi$$

The graph is of the function $f(x) = \frac{1}{x\sqrt{x^2 - 1}}$



Use the substitution $x = \sec \theta$ to determine the area between the curve, the x-axis, the vertical asymptote at x = 2 and extending indefinitely rightward as $x \to \infty$

[9 marks]