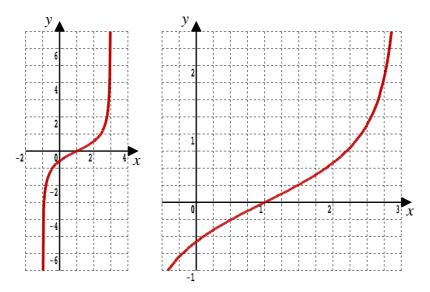
Improper Integrals


6.1 Revision

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 40

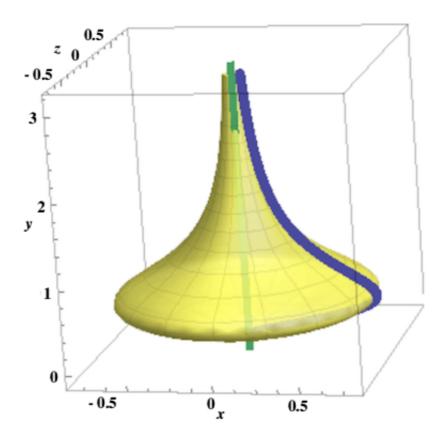
Question 1

Two views of the graph of $f(x) = \frac{x-1}{\sqrt{3+2x-x^2}} dx$ are presented below

Determine the value of the improper integral $\int_{1}^{3} \frac{x-1}{\sqrt{3+2x-x^2}} dx$

Further A-Level Examination Question from June 2016, FP2, Q1 (b), (OCR) Find, in exact form, the value of the following integral,

$$\int_0^{\frac{3}{4}} \frac{1}{\sqrt{3 - 4x^2}} \, dx$$


Hint: Use the substitution $x = \frac{\sqrt{3}}{2} \sin \theta$

(i) Find
$$\int \frac{1}{x(x+5)} dx$$

[4 marks]

(ii) Hence show that $\int_5^\infty \frac{1}{x^2 + 5x} dx$ converges and find its value

Find the volume swept out when the profile curve $x = \frac{y}{1 + 5y^3}$ is rotated $2\pi^c$ about the y-axis, $0 \le y < \infty$. The lower end of the solid is depicted below.

Further A-Level Examination Question from January 2013, FP2, Q1(a) (OCR)

(i) Differentiate with respect to x the equation $a \tan y = x$ (where a is a constant) and hence show that the derivative of $\arctan\left(\frac{x}{a}\right)$ is $\frac{a}{a^2 + x^2}$

[3 marks]

(ii) By first expressing $x^2 - 4x + 8$ in completed square form, evaluate the integral $\int_0^4 \frac{1}{x^2 - 4x + 8} dx$ giving your answer exactly.

		[4 marks]
(iv)	What does your part (iii) answer allow you to deduce regarding the improper integral $\int_0^\infty arctan x dx$? Give a reason for your answer.	
		[2 marks]
(v)	Sketch the graph of $y = \arctan x$ and explain how this backs up your part (iv) answer.	
		[2 marks]
This o	document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use	

Use integration by parts to find $\int arctan x dx$

(iii)