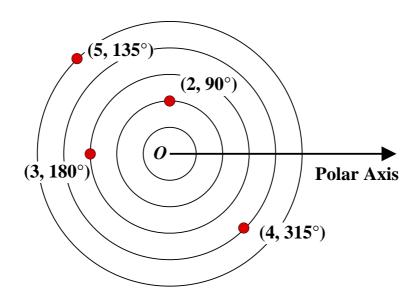

Further Pure A-Level Mathematics Compulsory Course Component Core 2

POLAR COORDINATES


Artwork made using Polar Coordinates

Further A-Level Pure Mathematics, Core 2

Polar Coordinates

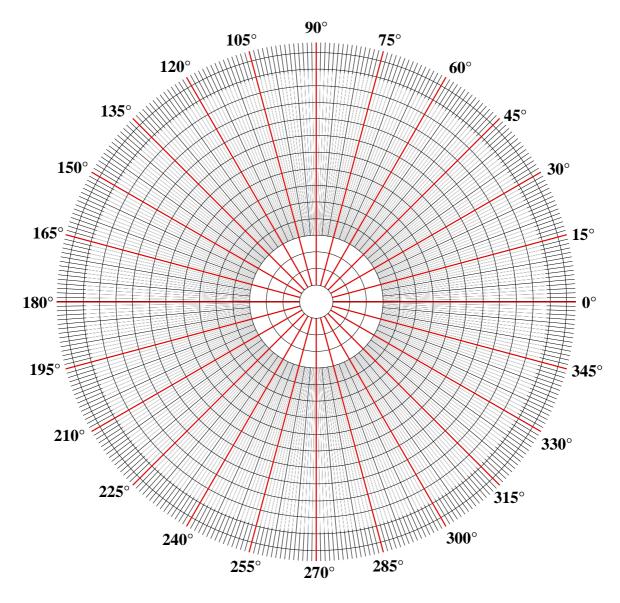
1.1 The Polar Coordinate System

The polar coordinates of a point describe its position in terms of a distance, r, from the origin, O, (called the "pole") and an angle, θ , measured anticlockwise from the polar axis. Usually the polar axis is in the same direction as the positive x-axis when using Cartesian coordinates.

The diagram shows four point along with their polar coordinates. Here, degrees have been used but often radians are preferred.

1.2 Plotting a Polar Curve

On a Cartesian graph the points are of the form (x, y) and equations are formed with x and y in them, these then being graphed. On a Polar graph the points are of the form (r, θ) . Mirroring what is done with the Cartesian system, polar equations can be formed with r and θ in them. And these can be graphed, but on polar graph paper, rather than Cartesian.


Here is a polar equation which is to be graphed.

$$r = 12\cos^2\theta - 4\sin\theta$$

To graph this polar equation, complete the table provided and then plot the polar coordinates obtained on the polar graph paper.

Work to 1 decimal place.

θ (in degrees)	0	15	30	4:	5	60		75	90
$r = 12\cos^2\theta - 8\sin\theta$									
θ (in degrees)	105	120	135		150		165		180
$r = 12\cos^2\theta - 8\sin\theta$									
θ (in degrees)	195	210	22	5	2	40	2	255	270
$r = 12\cos^2\theta - 8\sin\theta$									
θ (in degrees)	285	300	31	5	3	30	3	345	360
$r = 12\cos^2\theta - 8\sin\theta$									

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**"
© 2025 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from MHHShrewsbury@Gmail.com