Year 2 Pure Mathematics Examination Revision: Health Check N° 11

Who is the coolest doctor in the hospital? The hip consultant!

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 47

Question 1

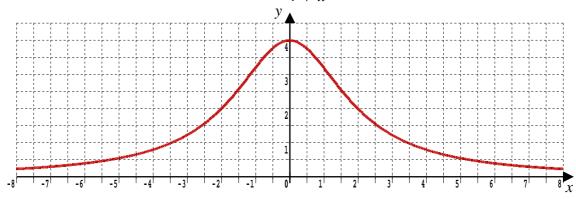
Given
$$y = x(2x + 1)^4$$
, show that $\frac{dy}{dx} = (2x + 1)^n (Ax + B)$

where n, A and B are constants to be found.

Question 2	
(i)	The fourth term of a geometric series is 16 and the seventh term of the series is 250. Find both the common ratio and the first term.
	[4 marks]
(ii)	The third, fourth and fifth terms of an arithmetic sequence are $3k$, $4k + 3$
	and $6k - 9$ respectively, where k is a constant. Show that the sum of the first n terms of the sequence is a square number.
	[5 marks]
(iii)	The first term of a geometric progression is 4 and the sum to infinity is 12. Find the common ratio.
	F 2 1

Question 3

The graph is of the function, $f(x) = \frac{16}{4 + x^2} \quad x \in \mathbb{R}$



(a) Find the exact coordinates of the two points of inflection

[6 marks]

The function m and the function n are defined by

$$m(x) = \frac{1}{4} f(x) \qquad x \in \mathbb{R}$$

$$n(x) = \frac{1}{3}f(x) + 4 \qquad x \in \mathbb{R}, \ x \ge \frac{2\sqrt{3}}{3}$$

(**b**) Find (**i**) the range of m

[1 mark]

(ii) the range of n

[2 marks]

Question 4

(a) Express $5 \cos \theta - 8 \sin \theta$ in the form $R \cos (\theta + \alpha)$, where R > 0 and $0 < \alpha < \pi$. Write R in surd form and give α to 4 decimal places.

[4 marks]

The temperature of a kiln, T $^{\circ}$ C, used to fire pottery, can be modelled by,

$$T = 1100 + 5\cos\left(\frac{x}{3}\right) - 8\sin\left(\frac{x}{3}\right), \qquad 0 \le x \le 72$$

where x is the time in hours since the pottery was placed in the kiln.

(**b**) Calculate the maximum value of T predicted by this model and the value of x, to 2 decimal places, when this maximum first occurs.

[4 marks]

(c) Calculate the times during the first 24 hours when the temperature is predicted, by this model, to be exactly 1097 °C

Question 5

The value, £V, of a vintage car t years after it was first valued on 1st January 2001 is modelled by the equation,

 $V = A p^t$ where A and p are constants

Given that the value of the car was £32 000 on 1st January 2005

and £50 000 on 1st January 2012

- (a) (i) find p to 4 decimal places
 - (ii) show that A is approximately 24 800

[4 marks]

- (**b**) With reference to the model, interpret
 - (i) the value of the constant A
 - (ii) the value of the constant p

[2 marks]

Using the model.

(c) find the year during which the value of the car first exceeds £100 000

[4 marks]