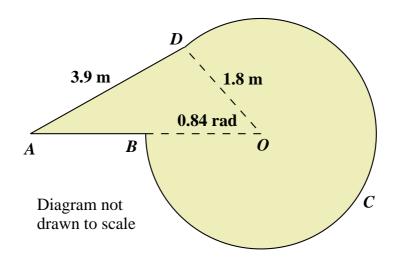


Fortify Your Maths

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 30

Question 1


Find the values of k for which $kx^2 + 8x + 5 = 0$ has distinct real roots, $k \in \mathbb{R}$

[3 marks]

Question 2

$$f(x) = px^3 - 3px^2 + x^2 - 4$$
, where p is a constant
Given that, when $x = 2$, $f''(x) = -1$, find the value of p

Question 3A-Level Examination Question from January 2019, Paper C12, Q10b (Edexcel)

The diagram shows the design for a shop sign *ABCDA*.

The sign consists of a triangle AOD joined to a sector of a circle DOBCD with radius 1.8 m and centre O. The points A, B and O lie on a straight line. It is given that AD = 3.9 m and angle BOD is 0.84 radians.

(a) Calculate the size of angle *DAO*, giving your answer in radians to 3 decimal places

[2 marks]

(**b**) Show that, to one decimal place, the length of *AO* is 4.9 metres.

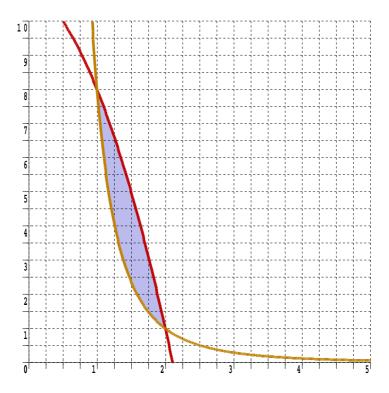
(c)	Find, in m ² , the area of the shop sign, giving your answer to one decimal place.	
(d)	Find, in metres, the perimeter of the shop sign, giving your answer to one decimal place	[3 marks]
		[3 marks]

Question 4

(i) Given that
$$y = \frac{1}{4x+1}$$
 find the value of $\frac{dy}{dx}$ when $x = \frac{1}{4}$

[3 marks]

(ii) Hence find the equation of the tangent to the curve when
$$x = \frac{1}{4}$$


[2 marks]

Question 5

Given that
$$x = 3 \sin y$$
 $-\frac{\pi}{2} < y < \frac{\pi}{2}$ show that $\frac{dy}{dx} = \frac{1}{\sqrt{9 - x^2}}$

Question 6

A-Level Examination Question from June 2017, Paper C2, Q6 (OCR)

The diagram shows parts of the curves $y = 11 - x - 2x^2$ and $y = \frac{8}{x^3}$

The curves intersect at (1, 8) and (2, 1)

Use integration to find the exact area of the shaded region enclosed between the two curves.

[4 marks]