
Do NOT open this paper until instructed to do so. While you are waiting to start write your name in the box directly below.

Name	Set
------	------------

SHREWSBURY SCHOOL

ADDITIONAL MATHEMATICS PAPER 1

Constructed from recent official OCR examination resources (6993)

Thursday 6th May 2021

8.30 am – 9.50 am (80 minutes) Extra Time finish: 10.10 am

5m1 & 5m2

- ♦ There are 60 marks available in this paper.
- ♦ You should attempt as many questions as you can.
- ♦ You must show full working, where appropriate, in order to gain full marks.
- ♦ You are expected to use a calculator in this paper.

Formulae FSMQ Additional Maths (6993)

Binomial series

$$(a + b)^n = a^n + {}^nC_1 a^{n-1} b + {}^nC_2 a^{n-2} b^2 + \dots + {}^nC_r a^{n-r} b^r + \dots + b^n$$

for positive integers, n , where ${}^nC_r = {}_nC_r = \binom{n}{r} = \frac{n!}{r!(n-r)!}, r \leq n$

The binomial distribution

If
$$X \sim B(n, p)$$
 then $P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}$

Numerical methods

Trapezium rule:
$$\int_{a}^{b} y \, dx = \frac{1}{2} h((y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}))$$

Kinematics

Variable acceleration formulae

Variable acceleration formulae
$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

$$s = \int v \, dt \text{ and } v = \int a \, dt$$

$$constant acceleration formulae
$$v = u + at$$

$$s = ut + \frac{1}{2} a t^2$$

$$s = \frac{1}{2} (u + v) t$$

$$v^2 = u^2 + 2as$$

$$s = vt - \frac{1}{2} a t^2$$$$

You are given that $y = x^3 + 2x - 7$

(a) Find $\frac{dy}{dx}$

[2 marks]

(**b**) Use your result to part (a) to show that the graph of $y = x^3 + 2x - 7$ has no turning points

[2 marks]

Question 2

Show that $\frac{2}{3+\sqrt{2}}$ can be written in the form $\frac{a-\sqrt{b}}{c}$

where a, b and c are integers to be found

(a) Simplify
$$\frac{x}{x+2} - \frac{6}{x-1}$$

[3 marks]

In this question you must show detailed reasoning

(**b**) Solve
$$\frac{x}{x+2} - \frac{6}{x-1} = 4$$
 giving your answer in exact form.

In this question you must show detailed reasoning

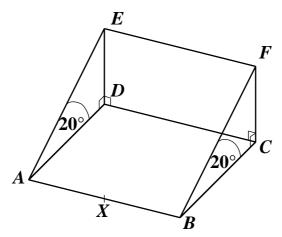
(a) Express $2x^2 + 8x - 12$ in the form $a(x + p)^2 + q$

[4 marks]

(**b**) Hence find the minimum value of $2x^2 + 8x - 12$

[1 mark]

Question 5


Solve
$$sin(x + 30^\circ) = 0.2$$
 for $0^\circ \le x \le 360^\circ$

In this question you must show detailed reasoning.

(a) Show that (x - 3) is a factor of $x^3 - 5x^2 + x + 15$

[1 mark]

(**b**) Hence solve the equation $x^3 - 5x^2 + x + 15 = 0$ Give exact answers.

The diagram shows a triangular prism.

The rectangle ABCD is horizontal and ABFE is a square inclined at 20° to the horizontal such that E is vertically above D and F is vertically above C. The area of the square ABFE is 1600 m^2 .

X is a point on \overrightarrow{AB} such that AX = 12 m.

Calculate

(\mathbf{a}) the area of ABCD

[3 marks]

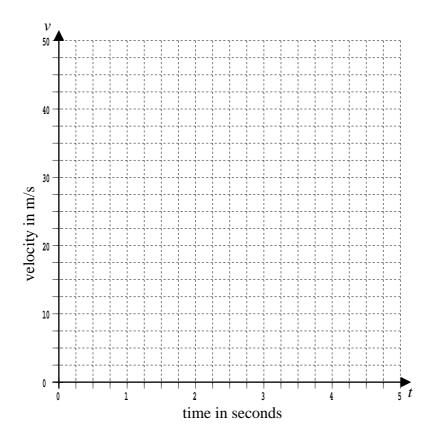
(**b**) the angle between the lines XE and XF

Λ	~~4: ~~~	O
Ou	estion	o

An object is falling through a liquid. The distance fallen is modelled by the formula $s = 48t - t^3$ until it comes to rest, where s is the distance fallen in centimetres and t is the time in seconds measured from the point when the object entered the liquid.

- (a) Find
 - (i) the acceleration when t = 1

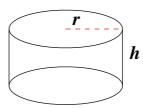
[**5** marks]


(ii) the time when the object comes to rest

[2 marks]

(iii) the distance fallen when the object comes to rest

[2 marks]


(**b**) Sketch the velocity/time graph for the period of time until the object comes to rest.

[1 mark]

Question 9

A container with volume 16π cm³ is to be a closed cylinder. The manufacturer wishes to minimise the surface area of the cylinder.

(i) Show that $h = \frac{16}{r^2}$ where h is the height (in cm) of the cylinder and r is the radius (in cm) of the circular base.

(ii) Hence show that the surface area is given by $S = 2\pi r^2 + \frac{32\pi}{r}$

[3 marks]

(iii) Find the value of r when $\frac{dS}{dr} = 0$

(iv)	Find the value of $\frac{d^2S}{dr^2}$ when $\frac{dS}{dr} = 0$	
		[4 marks]
(v)	Hence, find the minimum surface area of the cylinder	

[1 mark]

[End Of Paper]