
Do NOT open this paper until instructed to do so. While you are waiting to start write your name in the box directly below.

Name	 Set

ADDITIONAL MATHEMATICS PAPER 2

Constructed from recent official OCR examination resources (6993)

Wednesday 26th May 2021

11.30 am – 12.50 pm (80 minutes) Extra Time finish : 13.10 pm

Year 11

(Fifth form top sets)

- ♦ There are 60 marks available in this paper.
- ♦ You should attempt as many questions as you can.
- ♦ You must show full working, where appropriate, in order to gain full marks.
- ♦ You are expected to use a calculator in this paper.

Formulae FSMQ Additional Maths (6993)

Binomial series

$$(a + b)^n = a^n + {}^nC_1 a^{n-1} b + {}^nC_2 a^{n-2} b^2 + \dots + {}^nC_r a^{n-r} b^r + \dots + b^n$$

for positive integers, n , where ${}^nC_r = {}_nC_r = \binom{n}{r} = \frac{n!}{r!(n-r)!}, r \leq n$

The binomial distribution

If
$$X \sim B(n, p)$$
 then $P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}$

Numerical methods

Trapezium rule:
$$\int_{a}^{b} y \, dx = \frac{1}{2} h((y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}))$$

Kinematics

Variable acceleration formulae

$$v = \frac{ds}{dt}$$

$$v = u + at$$

$$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

$$s = ut + \frac{1}{2}at^2$$

$$s = \frac{1}{2}(u + v)t$$

$$v^2 = u^2 + 2as$$

$$s = vt - \frac{1}{2}at^2$$

In this question you must show detailed reasoning.

You are given that $a = 6\sqrt{2}$ and $b = 2\sqrt{6}$

Express the following as simply as possible,

(a) *ab*

[2 marks]

 (\mathbf{b}) $\frac{a}{b}$

[2 marks]

Question 2

Express $x^3 - 3x^2 + 3x - 2$ as the product of a linear and a quadratic expression.

The tangent to the curve $y = 3 - x^3$ at (1, 2) cuts the y-axis at a point A Determine the coordinates of A

A triangle ABC is such that AB = 5 cm, BC = 8 cm and CA = 7 cm Show that one angle is 60°

In this question you must show detailed reasoning.

Find the values of x in the range $0^{\circ} < x < 360^{\circ}$ that satisfy the following equations, giving your answers correct to 1 decimal place.

(a)
$$\sin 2x = 0.4$$

[3 marks]

$$(\mathbf{b}) \quad \sin^2 x = 2\cos x - 1$$

In this question you must show detailed reasoning.

Find the coordinates of the minimum point on the curve $y = x^3 - 6x^2 + 9x + 7$ justifying your answer.

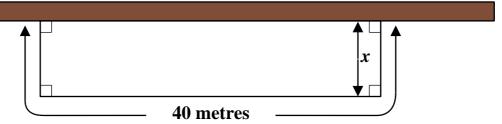
Question	7
Oueshon	1

The points A and B have coordinates (1, 2) and (5, 8) respectively.

(a) Find the exact value of the length AB

[2 marks]

The point M is the midpoint of the line segment AB

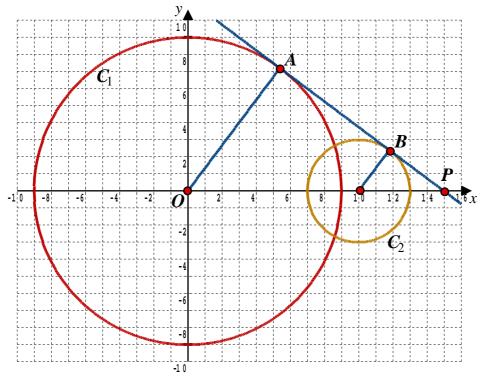

- **(b)** Find
 - (i) the coordinates of M

[1 mark]

(ii) the equation of the line through M which is perpendicular to AB

A farmer wishes to enclose an area of his land. Against a long straight wall he makes a rectangular shape with a fence that is 40 metres long.

The width of the rectangle is x metres.


(a) Find an expression for the area of the enclosure, giving your answer in the form $a(x + b)^2 + c$ where a, b and c are integers to be determined.

[4 marks]

(**b**) Without using calculus, determine the maximum area which the farmer can enclose.

[2 marks]

(c) Determine the values of x that will give an area of exactly 150 m^2

The circle C_1 has equation $x^2 + y^2 = 81$

The circle C_2 has centre (10, 0) and radius 3

(a) Write down the equation of C_2

[1 mark]

The line ABP is a tangent to C_1 at A and is also a tangent to C_2 at B It cuts the x-axis at the point P

(**b**) By considering similar triangles, show that the coordinates of P are (15, 0)

In this question you must show detailed reasoning.

The equation $x^3 - 3x + k = 0$, where k is a constant, has a root x = 2. Find the numerical value(s) of the other roots of this equation.

You are given that the line y = 2x + k cuts the circle $x^2 + y^2 = 5$ in two points, A and B.

(a) Show that the x-coordinates of A and B satisfy the equation,

$$5x^2 + 4kx + (k^2 - 5) = 0$$

[2 marks]

(\mathbf{b}) Hence find the values of k for which the line is a tangent to the circle.

[2 marks]