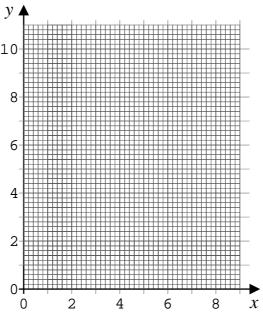
7.1 Sweating the Exam

Example

This question is about finding the area in the quadrant between the positive x-axis and the positive y-axis and the curve, C, with parametric equations,


$$x = 4 - t^2$$
 and $y = t (t + 1)$ for $t \ge 0$

(i) Complete the following table,

t	0	0.5	1	1.5	2
х					
у					

[2 marks]

(ii) Use the table to sketch the curve, *C*, and shade the area to be found.

[2 marks]

(iii) Use parametric integration to find the area.

The following teaching video demonstrates a method of solution, and may be used to help write out your solution, if required. http://www.NumberWonder.co.uk/Video/v9045(11a).mp4

Notice that, as the bend is anticlockwise as *t* increases, strictly speaking the

integration gives the area sought but with a negative sign. The video has a convincing dodge to argue about which is the lower and which is the upper limit. The following rule is worth keeping in mind;

The Limit Swap Rule

$$\int_{A}^{B} -f(x) \ dx = \int_{B}^{A} f(x) \ dx$$

The video begins having already done the following step,

$$Area = \int y \, dx = \int y \, \frac{dx}{dt} \, dt$$

7.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 34

Question 1

A-Level Examination Question from January 2010, Paper C4, Q7 (Edexcel)

The diagram shows a sketch of the curve C with parametric equations

$$x = 5t^2 - 4$$
 $y = t(9 - t^2)$

The curve C cuts the x-axis at the points A and B

(a) Find the x-coordinate at the point A and the x-coordinate at the point B

[3 marks]

The region R, shown shaded, is enclosed by the loop of the curve

(**b**) Use integration to find the area of R

Question 2

A-Level Examination Question from June 2018, Q14 (Edexcel)

A curve C has parametric equations

$$x = 3 + 2 \sin t$$
 $y = 4 + 2 \cos 2t$ $0 \le t < 2\pi$

$$y = 4 + 2\cos 2t$$

$$0 \le t < 2\pi$$

Show that all points on C satisfy (a)

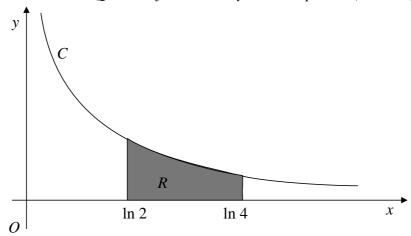
$$y = 6 - (x - 3)^2$$

[2 marks]

(b) (i) Sketch the curve *C*

> Explain briefly why C does not include all points of (ii)

$$y = 6 - (x - 3)^2 \qquad x \in \mathbb{R}$$


$$x \in \mathbb{R}$$

The line with equation x + y = k where k is a constant, intersects C at two distinct points

(c) State the range of values of k writing your answer in set notation

Question 3

A-Level Examination Question from January 2008, Paper C4 (Edexcel)

The curve C has parametric equations

$$x = ln(t+2)$$
 $y = \frac{1}{(t+1)}$

The finite region R between the curve C and the x-axis, bounded by the lines with equations $x = ln \ 2$ and $x = ln \ 4$, is shown shaded.

(a) Show that the area of R is given by the integral,

$$\int_0^2 \frac{1}{(t+1)(t+2)} dt$$

[4 marks]

(**b**) Hence find an exact value for this area.

(d) State the domain of values for <i>x</i> for this curve.	[4 marks]
Help for Q3 : http://www.NumberWonder.co.uk/Video/v9045(11d).mp4	[1 mark]
This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use	

Find a Cartesian equation of the curve C in the form y = f(x)

(c)