A-Level ~ Year 1 ~ Pure Mathematics

PROOF

~ The Art of Absolute Certainty ~

	1	0.11	Square	
	1	Odd	Cube	Triangular
Prime	2	Even		l
Prime	3	Odd		Triangular
Composite	4	Even	Square	
Prime	5	Odd		
Composite	6	Even		Triangular
Prime	7	Odd		
Composite	8	Even	Cube	
Composite	9	Odd	Square	
Composite	10	Even		Triangular
Prime	11	Odd		
Composite	12	Even		
Prime	13	Odd		
Composite	14	Even		
Composite	15	Odd		Triangular
Composite	16	Even	Square	
Prime	17	Odd		
	•••			

PROOF ~ The Art of Absolute Certainty ~

Lesson 1

A-Level Pure Mathematics, Year 1

Proof I: The Art of Absolute Certainty

1.1 Consecutive Numbers

Our first foray into proof is going to be mostly working with the natural numbers, \mathbb{N} , which are often referred to as "The Counting Numbers",

 $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...\}$ Notice that zero is not included.

1.2 A Consecutive Sum Example

Three consecutive natural numbers have a sum of 84.

What are the three consecutive natural numbers?

Method 1: Form and Solve an Equation

[2 marks]

Method 2: Make a Simplifying Assumption

[2 marks]

1.3 A Consecutive Product Example

Three consecutive natural numbers have a product of 85140.

What are the three consecutive natural numbers?

Method 1: Form and Solve an Equation

[2 marks]

Method 2: Make a Simplifying Assumption

[2 marks]

1.4 Consecutive Odd Numbers

Complete the following table for the odd number sequence

p	1	2	3	4	::	n	n + 1	n+2	
T_p	1	3							

[4 marks]

1.5 A First Proof

- (a) Calculate each of the following,
 - (i) 1×3
 - (ii) 3×5
 - (iii) 5×7
 - (iv) 7×9
 - $(\mathbf{v}) \quad 9 \times 11$

[2 marks]

(**b**) Prove that the product of two consecutive odd numbers is always one less than a square number.

1.6 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 40 marks

Question 1

Three consecutive natural numbers have a sum of 204 What are the three consecutive natural numbers?

[2 marks]

Question 2

Three consecutive natural numbers have a product of 778596 What are the three consecutive natural numbers?

[2 marks]

Question 3

Four consecutive natural numbers have a sum of 78 What are the four consecutive natural numbers?

[2 marks]

Question 4

Five consecutive natural numbers have a product of 95040 What are the five consecutive natural numbers?

[3 marks]

Question 5

(a) Calculate each of the following,

(i)
$$3^2 - 1^2$$

(ii)
$$5^2 - 3^2$$

(iii)
$$7^2 - 5^2$$

(iv)
$$9^2 - 7^2$$

$$(\mathbf{v}) \quad 11^2 - 9^2$$

[3 marks]

(**b**) Prove that the difference between two consecutive odd numbers that have been squared is always divisible by 8

[5 marks]

Question 6

Prove that the sum of four consecutive odd numbers is always divisible by 8

Question 7

Complete the following table for the even number sequence,

p	1	2	3	4	 <i>n</i> − 1	n	n+1	
T_p	2	4						

[5 marks]

Question 8

Three consecutive even numbers have a sum of 72.

What are the three consecutive even numbers?

[4 marks]

Question 9

Prove that the sum of the squares of three consecutive even numbers is always divisible by 4

\sim	4 •	40
()11(estion	. 10

AS-Level Examination Question from November 2021, Paper 1, Q10 (Edexcel) A student is investigating the following statement about natural numbers, \mathbb{N} ,

"
$$n^3 - n$$
 is a multiple of 4"

(a) Prove, using algebra, that the statement is true for all odd numbers.

[4 marks]

(**b**) Use a counterexample to show that the statement is not always true.

[1 mark]