A-Level Pure Mathematics, Year 1

Proof I: The Art of Absolute Certainty

6.1 Revision

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 50 marks

Question 1

Marcus has a theory.

He believes that the product of an odd and an even number is never a perfect square. Show that Marcus is wrong by finding a counterexample to disprove his theory.

[3 marks]

Question 2

Prove that when any odd integer is squared, the result is always one more than a multiple of 8.

\sim	4 •	~
()114	estion	- 1

(i)	Prove that the difference of the squares of two consecutive even numbers
	is always divisible by 4.

[3 marks]

(ii) Is the above statement true for odd numbers? Give a reason for your answer.

Work out, $3^2 + 4^2 + 5^2 + 6^2 + 7^2$ (i)

[1 mark]

(ii) Prove that the sum of the squares of any five consecutive integers is divisible by 5

[2 marks]

Prove that if five consecutive integers are squared, the mean of the (iii) squares exceeds the square of their median by 2

[4 marks]

Hence, without using a calculator, write down the value of (iv)

$$\frac{98^2 + 99^2 + 100^2 + 101^2 + 102^2}{5}$$

AS-Level Examination Question from October 2020, Paper 1, Q13 (Edexcel)

(a) Prove that for all positive values of a and b

$$\frac{4a}{b} + \frac{b}{a} \geqslant 4$$

[4 marks]

(**b**) Prove, by counter example, that this is not true for all values of a and b.

[1 mark]

Question 6

Write down any 3-digit number abc then repeat the digits to form the 6-digit number abcabc

Explain why the 6-digit number will be divisible by 7, by 11 and by 13

-	•	•	• 1	• 1	• 4			
	17	716	יווי	M	lity	(7 P	N T 7	
v	11	1	ш	,,,	LLU'	V 1.	, v	•

Subtract twice the last digit from the number formed by the remaining digits. Repeat as necessary.

If, at any stage, a result is obtained that is obviously divisible by 7 then the original number is also divisible by 7

(i) Without using a calculator, show that 2331 is divisible by 7

[2 marks]

(ii) Without using a calculator, show that 515011 is divisible by 7

[2 marks]

(iii) Provide a proof that explains why the test for divisibility by 7 works

Examination Question from 2013, Q12 AH Maths (SQA)

Let n be a natural number.

For each of the following statements, decide whether it is true or false.

If true, give a proof; if false, give a counterexample.

(i) If *n* is a multiple of 9 then so is n^2

[3 marks]

(ii) If n^2 is a multiple of 9 then so is n

[3 marks]