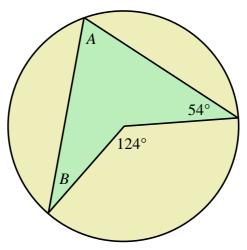
Twenty-One Today #2

You have thirty-five minutes to answer 21 questions

Marks Available: 40


GCSE Mathematics Twenty-One Today

Question 1

Consider the functions, $f(x) = \frac{x^2 + 1}{2}$ g(x) = 4x + 3Determine f(g)

[1 mark]

Question 2

A Quadrilateral is shown with one vertex at the centre of a circle.

(i) Write down the size of angle A

(ii) Calculate the size of angle B

[1 mark]

[1 mark]

Question 3

Solve the equation, 4(3x + 2) - 3(2x + 1) = 29

[2 marks]

$\mathbf{\alpha}$	4 •	4
Que	estion	4

((i)	Solve	the ine	quality	v:

$$-5 < 4x + 3 \le 13$$

[2 marks]

(ii) If x is an integer, list the values of x that satisfy the part (i) inequality.

[1 mark]

Question 5

Write the number 0.00000315 in standard form.

[1 mark]

Question 6

Felix is interested in buying a drone, priced at £425.

When the drone is reduced by 40% in a sale, Felix decides he can't afford not to buy.

What is the reduced cost of the drone?

[1 mark]

Question 7

You are told the "product of primes" for two numbers;

$$2340 = 2 \times 2 \times 3 \times 3 \times 5 \times 13$$

 $6615 = 3 \times 3 \times 3 \times 5 \times 7 \times 7$

What is the Highest Common factor of 2340 and 6615?

Make c the subject of the formula, $E = m c^2$

[1 mark]

Question 9

Use a compass and a straight edge to construct the perpendicular bisector to the line AB drawn given below.

Do NOT rub out any marks used in the construction.

A supermarket measures the time spent by 100 customers in their store.

Time	N° of Customers (frequency)	Cumulative Frequency
0 < <i>t</i> ≤ 5	8	
5 < <i>t</i> ≤ 10	11	
10 < <i>t</i> ≤ 15	23	
15 < <i>t</i> ≤ 20	42	
20 < t ≤ 25	9	
25 < t ≤ 30	5	
30 < t ≤ 35	2	

Complete the column headed Cumulative Frequency.

[1 mark]

Question 11

Expand the brackets and simplify; (3x + 4)(2x - 3)

[1 mark]

Question 12

Consider the following number which is written in standard form;

$$8.13 \times 10^4$$

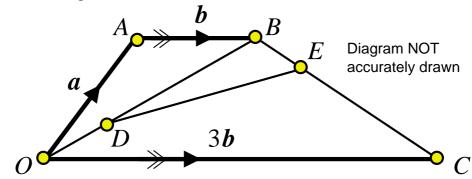
Write this as an ordinary number.

[1 mark]

Question 13

(i) What is the area of a circle of radius 6.4 cm? Give your answer to three significant figures.

[1 mark]


(ii) A cylinder has a cross section that is a circle of radius 6.4 cm. It is 25 cm in length.

What is the volume of the cylinder?

Give your answer to three significant figures.

[1 mark]

OABC is a trapezium.

$$\overrightarrow{OA} = a$$

$$\overrightarrow{AB} = \boldsymbol{b}$$

$$\overrightarrow{OC} = 3\mathbf{b}$$

D is the point on OB such that OD:DB = 2:3

E is the point on BC such that BE : EC = 1 : 4

Work out the vector \overrightarrow{DE} in terms of \boldsymbol{a} and \boldsymbol{b} . Give your answer in its simplest form.

[4 marks]

Question 15

9 is a square number.

(i) List the three factors of 9.

[1 mark]

Jack says that all square numbers have exactly three factors.

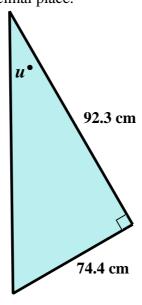
(ii) Give an example of a square number that proves Jack is wrong.

[1 mark]

Two ordinary six faced dice are rolled, one red and one blue.

A *prime roll* is one in which both dice show a prime number.

For example, if the red shows 5 and the blue shows 3 that is a *prime roll*.


Using the grid below to help, determine the probability of a *prime roll*.

		RED					
		1	2	3	4	5	6
B L U E	1						
	2						
	3					P	
	4						
	5						
	6						

[3 marks]

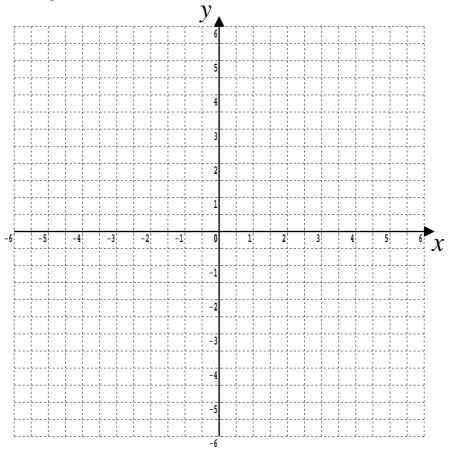
Question 17

Calculate the size of angle u in the triangle below. Give your answer to one decimal place.

[2 marks]

Question 18

Expand the brackets and simplify, $(3x)^2 \times (2x)^3$


[2 marks]

On the grid show, by shading, the region that satisfies all of these inequalities,

$$2y + 4 < x$$

$$y < 6 - 3x$$

Label the region **R**.

[3 marks]

Question 20

By first factorising solve the equation $x^2 + 3x - 28 = 0$

[2 marks]

21 Today!

Use the observation that, $1 + 3 = 2^2$, $1 + 3 + 5 = 3^2$, $1 + 3 + 5 + 7 = 4^2$ to calculate: $1 + 3 + 5 + 7 + 9 + 11 + 13 + \dots + 95 + 97 + 99$

[2 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**"
© 2025 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from MHHShrewsbury@Gmail.com