Push The Pace #3

You have thirty-five minutes to answer seven examination questions

Marks Available: 40 (+ 10 bonus)

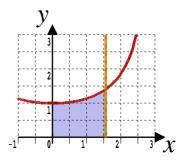
Further A-Level Pure Mathematics Push The Pace Revision Papers

Question 1

Further A-Level Examination Question from June 2019, Paper 1, Q4 (OCR)

The graph shows the region bounded by the curve $y = sec(\frac{x}{2})$, the x-axis, the

y-axis and the line $x = \frac{\pi}{2}$



This region is rotated through 2π radians about the x-axis.

Find, in exact form, the volume of the solid of revolution generated.

Further AS-Level Examination Question from June 2016, Paper FP1. Q1 (CEA)

Let
$$\mathbf{A} = \begin{pmatrix} 5 & 4 \\ -3 & -2 \end{pmatrix}$$
 and $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

(i) Verify that
$$A^2 = 3A - 2I$$

[4 marks]

(ii) Hence, or otherwise, express the matrix \mathbf{A}^{-1} in the form $\alpha \mathbf{A} + \beta \mathbf{I}$, where α and β are real numbers.

Further A-Level Examination Question from June 2019, Paper 1, Q8 (OCR)

The roots of the equation $x^3 - x^2 + kx - 2 = 0$ are α , $\frac{1}{\alpha}$ and β

(a) Evaluate, in exact form, the roots of the equation.

[6 marks]

(**b**) Find k

Further AS-Level Examination Question from June 2021, Paper 1, Q8 (AQA) Stephen is correctly told that (1 + i) and -1 are two roots of the polynomial equation $z^3 - 2iz^2 + pz + q = 0$ where p and q are complex numbers.

(a) Stephen states that (1 - i) must also be a root of the equation because roots of polynomial equations occur in conjugate pairs. Explain why Stephen's reasoning is wrong.

[1 mark]

(**b**) Find p and q

[5 marks]

Question 5

Further A-Level Examination Question from June 2019, Paper 1, Q4 (AQA) Solve the equation $2z - 5iz^* = 12$

\sim	4 •	-
U	uestion	O

Further A-Level Examination Question from June 2015, Paper FP3, Q1 (WJEC)

(a) Express $5 \cosh \theta + 3 \sinh \theta$ in the form $r \cosh (\theta + \alpha)$, r > 0, where the values of r and α are to be found.

[4 marks]

(**b**) Hence solve the equation $5 \cosh \theta + 3 \sinh \theta = 10$

Further A-Level Examination Question from June 2017, Paper FP3, Q6 (WJEC)

The integral I_n is given, for $n \ge 0$, by $I_n = \int_0^{\frac{\pi}{4}} tan^n x \, dx$

(a) Show that, for
$$n \ge 2$$
, $I_n = \frac{1}{n-1} - I_{n-2}$

Hint : set up a chain rule backwards keeping in mind that the derivative of tan x is $sec^2 x$

(**b**) Hence determine the value of the integral, $\int_0^{\frac{\pi}{4}} (3 + tan^2 x)^2 dx$ leaving your answer in terms of π